| [ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
4.8.2 Trigonometric functions
cl_R sin (const cl_R& x)-
Returns
sin(x). The range of the result is the interval-1 <= sin(x) <= 1. cl_N sin (const cl_N& z)Returns
sin(z). The range of the result is the entire complex plane.cl_R cos (const cl_R& x)-
Returns
cos(x). The range of the result is the interval-1 <= cos(x) <= 1. cl_N cos (const cl_N& x)Returns
cos(z). The range of the result is the entire complex plane.struct cos_sin_t { cl_R cos; cl_R sin; };cos_sin_t cos_sin (const cl_R& x)Returns both
sin(x)andcos(x). This is more efficient than computing them separately. The relationcos^2 + sin^2 = 1will hold only approximately.cl_R tan (const cl_R& x)cl_N tan (const cl_N& x)Returns
tan(x) = sin(x)/cos(x).cl_N cis (const cl_R& x)cl_N cis (const cl_N& x)Returns
exp(i*x). The name ‘cis’ means “cos + i sin”, becausee^(i*x) = cos(x) + i*sin(x).cl_N asin (const cl_N& z)Returns
arcsin(z). This is defined asarcsin(z) = log(iz+sqrt(1-z^2))/iand satisfiesarcsin(-z) = -arcsin(z). The range of the result is the strip in the complex domain-pi/2 <= realpart(arcsin(z)) <= pi/2, excluding the numbers withrealpart = -pi/2andimagpart < 0and the numbers withrealpart = pi/2andimagpart > 0.cl_N acos (const cl_N& z)-
Returns
arccos(z). This is defined asarccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/iand satisfiesarccos(-z) = pi - arccos(z). The range of the result is the strip in the complex domain0 <= realpart(arcsin(z)) <= pi, excluding the numbers withrealpart = 0andimagpart < 0and the numbers withrealpart = piandimagpart > 0. cl_R atan (const cl_R& x, const cl_R& y)Returns the angle of the polar representation of the complex number
x+iy. This isatan(y/x)ifx>0. The range of the result is the interval-pi < atan(x,y) <= pi. The result will be an exact number only ifx > 0andyis the exact0. WARNING: In Common Lisp, this function is called as(atan y x), with reversed order of arguments.cl_R atan (const cl_R& x)Returns
arctan(x). This is the same asatan(1,x). The range of the result is the interval-pi/2 < atan(x) < pi/2. The result will be an exact number only ifxis the exact0.cl_N atan (const cl_N& z)Returns
arctan(z). This is defined asarctan(z) = (log(1+iz)-log(1-iz)) / 2iand satisfiesarctan(-z) = -arctan(z). The range of the result is the strip in the complex domain-pi/2 <= realpart(arctan(z)) <= pi/2, excluding the numbers withrealpart = -pi/2andimagpart >= 0and the numbers withrealpart = pi/2andimagpart <= 0.
Archimedes’ constant pi = 3.14… is returned by the following functions:
cl_F pi (float_format_t f)-
Returns pi as a float of format
f. cl_F pi (const cl_F& y)Returns pi in the float format of
y.cl_F pi (void)Returns pi as a float of format
default_float_format.
| [ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated on August 27, 2013 using texi2html 5.0.
