[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
15.8.6 Floating Point
Floating point arithmetic is used in GMP for multiplications on CPUs with poor
integer multipliers. It’s mostly useful for mpn_mul_1
,
mpn_addmul_1
and mpn_submul_1
on 64-bit machines, and
mpn_mul_basecase
on both 32-bit and 64-bit machines.
With IEEE 53-bit double precision floats, integer multiplications producing up to 53 bits will give exact results. Breaking a 64x64 multiplication into eight 16x32->48 bit pieces is convenient. With some care though six 21x32->53 bit products can be used, if one of the lower two 21-bit pieces also uses the sign bit.
For the mpn_mul_1
family of functions on a 64-bit machine, the
invariant single limb is split at the start, into 3 or 4 pieces. Inside the
loop, the bignum operand is split into 32-bit pieces. Fast conversion of
these unsigned 32-bit pieces to floating point is highly machine-dependent.
In some cases, reading the data into the integer unit, zero-extending to
64-bits, then transferring to the floating point unit back via memory is the
only option.
Converting partial products back to 64-bit limbs is usually best done as a signed conversion. Since all values are smaller than 2^53, signed and unsigned are the same, but most processors lack unsigned conversions.
Here is a diagram showing 16x32 bit products for an mpn_mul_1
or
mpn_addmul_1
with a 64-bit limb. The single limb operand V is split
into four 16-bit parts. The multi-limb operand U is split in the loop into
two 32-bit parts.
+---+---+---+---+ |v48|v32|v16|v00| V operand +---+---+---+---+ +-------+---+---+ x | u32 | u00 | U operand (one limb) +---------------+ --------------------------------- +-----------+ | u00 x v00 | p00 48-bit products +-----------+ +-----------+ | u00 x v16 | p16 +-----------+ +-----------+ | u00 x v32 | p32 +-----------+ +-----------+ | u00 x v48 | p48 +-----------+ +-----------+ | u32 x v00 | r32 +-----------+ +-----------+ | u32 x v16 | r48 +-----------+ +-----------+ | u32 x v32 | r64 +-----------+ +-----------+ | u32 x v48 | r80 +-----------+
p32 and r32 can be summed using floating-point addition, and likewise p48 and r48. p00 and p16 can be summed with r64 and r80 from the previous iteration.
For each loop then, four 49-bit quantities are transferred to the integer unit, aligned as follows,
|-----64bits----|-----64bits----| +------------+ | p00 + r64' | i00 +------------+ +------------+ | p16 + r80' | i16 +------------+ +------------+ | p32 + r32 | i32 +------------+ +------------+ | p48 + r48 | i48 +------------+
The challenge then is to sum these efficiently and add in a carry limb, generating a low 64-bit result limb and a high 33-bit carry limb (i48 extends 33 bits into the high half).
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated on March 31, 2014 using texi2html 5.0.