[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
7.13.4 Legendre Form of Incomplete Elliptic Integrals
- Function: double gsl_sf_ellint_F (double phi, double k, gsl_mode_t mode)
- Function: int gsl_sf_ellint_F_e (double phi, double k, gsl_mode_t mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral F(\phi,k) to the accuracy specified by the mode variable mode. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2.
- Function: double gsl_sf_ellint_E (double phi, double k, gsl_mode_t mode)
- Function: int gsl_sf_ellint_E_e (double phi, double k, gsl_mode_t mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral E(\phi,k) to the accuracy specified by the mode variable mode. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2.
- Function: double gsl_sf_ellint_P (double phi, double k, double n, gsl_mode_t mode)
- Function: int gsl_sf_ellint_P_e (double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral \Pi(\phi,k,n) to the accuracy specified by the mode variable mode. Note that Abramowitz & Stegun define this function in terms of the parameters m = k^2 and \sin^2(\alpha) = k^2, with the change of sign n \to -n.
- Function: double gsl_sf_ellint_D (double phi, double k, double n, gsl_mode_t mode)
- Function: int gsl_sf_ellint_D_e (double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result)
These functions compute the incomplete elliptic integral D(\phi,k) which is defined through the Carlson form RD(x,y,z) by the following relation, The argument n is not used and will be removed in a future release.