[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
7.32.1 Riemann Zeta Function
The Riemann zeta function is defined by the infinite sum \zeta(s) = \sum_{k=1}^\infty k^{-s}.
- Function: double gsl_sf_zeta_int (int n)
- Function: int gsl_sf_zeta_int_e (int n, gsl_sf_result * result)
These routines compute the Riemann zeta function \zeta(n) for integer n, n \ne 1.
- Function: double gsl_sf_zeta (double s)
- Function: int gsl_sf_zeta_e (double s, gsl_sf_result * result)
These routines compute the Riemann zeta function \zeta(s) for arbitrary s, s \ne 1.