manpagez: man pages & more
info gsl-ref
Home | html | info | man
[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

16.6 QAGI adaptive integration on infinite intervals

Function: int gsl_integration_qagi (gsl_function * f, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr)

This function computes the integral of the function f over the infinite interval (-\infty,+\infty). The integral is mapped onto the semi-open interval (0,1] using the transformation x = (1-t)/t, It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod rule of QAGS is replaced by a 15-point rule, because the transformation can generate an integrable singularity at the origin. In this case a lower-order rule is more efficient.

Function: int gsl_integration_qagiu (gsl_function * f, double a, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr)

This function computes the integral of the function f over the semi-infinite interval (a,+\infty). The integral is mapped onto the semi-open interval (0,1] using the transformation x = a + (1-t)/t, and then integrated using the QAGS algorithm.

Function: int gsl_integration_qagil (gsl_function * f, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr)

This function computes the integral of the function f over the semi-infinite interval (-\infty,b). The integral is mapped onto the semi-open interval (0,1] using the transformation x = b - (1-t)/t, and then integrated using the QAGS algorithm.


© manpagez.com 2000-2025
Individual documents may contain additional copyright information.