[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
19.3 The Gaussian Tail Distribution
- Function: double gsl_ran_gaussian_tail (const gsl_rng * r, double a, double sigma)
This function provides random variates from the upper tail of a Gaussian distribution with standard deviation sigma. The values returned are larger than the lower limit a, which must be positive. The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann. Math. Stat. 32, 894–899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139,586 (exercise 11).
The probability distribution for Gaussian tail random variates is, for x > a where N(a;\sigma) is the normalization constant,
- Function: double gsl_ran_gaussian_tail_pdf (double x, double a, double sigma)
This function computes the probability density p(x) at x for a Gaussian tail distribution with standard deviation sigma and lower limit a, using the formula given above.
- Function: double gsl_ran_ugaussian_tail (const gsl_rng * r, double a)
- Function: double gsl_ran_ugaussian_tail_pdf (double x, double a)
These functions compute results for the tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, sigma = 1.