[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
19.13 The Levy skew alpha-Stable Distribution
- Function: double gsl_ran_levy_skew (const gsl_rng * r, double c, double alpha, double beta)
This function returns a random variate from the Levy skew stable distribution with scale c, exponent alpha and skewness parameter beta. The skewness parameter must lie in the range [-1,1]. The Levy skew stable probability distribution is defined by a fourier transform, When \alpha = 1 the term \tan(\pi \alpha/2) is replaced by -(2/\pi)\log|t|. There is no explicit solution for the form of p(x) and the library does not define a corresponding
pdf
function. For \alpha = 2 the distribution reduces to a Gaussian distribution with \sigma = \sqrt{2} c and the skewness parameter has no effect. For \alpha < 1 the tails of the distribution become extremely wide. The symmetric distribution corresponds to \beta = 0.The algorithm only works for 0 < alpha <= 2.
The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution p(c, \alpha, \beta) then the sum Y = X_1 + X_2 + \dots + X_N will also be distributed as an alpha-stable variate, p(N^(1/\alpha) c, \alpha, \beta).