[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
4.3 Elementary Functions
The following routines provide portable implementations of functions
found in the BSD math library. When native versions are not available
the functions described here can be used instead. The substitution can
be made automatically if you use autoconf
to compile your
application (see section Portability functions).
- Function: double gsl_log1p (const double x)
-
This function computes the value of \log(1+x) in a way that is accurate for small x. It provides an alternative to the BSD math function
log1p(x)
.
- Function: double gsl_expm1 (const double x)
-
This function computes the value of \exp(x)-1 in a way that is accurate for small x. It provides an alternative to the BSD math function
expm1(x)
.
- Function: double gsl_hypot (const double x, const double y)
-
This function computes the value of \sqrt{x^2 + y^2} in a way that avoids overflow. It provides an alternative to the BSD math function
hypot(x,y)
.
- Function: double gsl_hypot3 (const double x, const double y, const double z)
-
This function computes the value of \sqrt{x^2 + y^2 + z^2} in a way that avoids overflow.
- Function: double gsl_acosh (const double x)
-
This function computes the value of \arccosh(x). It provides an alternative to the standard math function
acosh(x)
.
- Function: double gsl_asinh (const double x)
-
This function computes the value of \arcsinh(x). It provides an alternative to the standard math function
asinh(x)
.
- Function: double gsl_atanh (const double x)
-
This function computes the value of \arctanh(x). It provides an alternative to the standard math function
atanh(x)
.
- Function: double gsl_ldexp (double x, int e)
-
This function computes the value of x * 2^e. It provides an alternative to the standard math function
ldexp(x,e)
.
- Function: double gsl_frexp (double x, int * e)
-
This function splits the number x into its normalized fraction f and exponent e, such that x = f * 2^e and 0.5 <= f < 1. The function returns f and stores the exponent in e. If x is zero, both f and e are set to zero. This function provides an alternative to the standard math function
frexp(x, e)
.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |