[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
35.4 Providing a function to minimize
You must provide a parametric function of n variables for the minimizers to operate on. You may also need to provide a routine which calculates the gradient of the function and a third routine which calculates both the function value and the gradient together. In order to allow for general parameters the functions are defined by the following data types:
- Data Type: gsl_multimin_function_fdf
This data type defines a general function of n variables with parameters and the corresponding gradient vector of derivatives,
-
double (* f) (const gsl_vector * x, void * params)
this function should return the result f(x,params) for argument x and parameters params. If the function cannot be computed, an error value of
GSL_NAN
should be returned.-
void (* df) (const gsl_vector * x, void * params, gsl_vector * g)
this function should store the n-dimensional gradient g_i = d f(x,params) / d x_i in the vector g for argument x and parameters params, returning an appropriate error code if the function cannot be computed.
-
void (* fdf) (const gsl_vector * x, void * params, double * f, gsl_vector * g)
This function should set the values of the f and g as above, for arguments x and parameters params. This function provides an optimization of the separate functions for f(x) and g(x)—it is always faster to compute the function and its derivative at the same time.
-
size_t n
the dimension of the system, i.e. the number of components of the vectors x.
-
void * params
a pointer to the parameters of the function.
-
- Data Type: gsl_multimin_function
This data type defines a general function of n variables with parameters,
-
double (* f) (const gsl_vector * x, void * params)
this function should return the result f(x,params) for argument x and parameters params. If the function cannot be computed, an error value of
GSL_NAN
should be returned.-
size_t n
the dimension of the system, i.e. the number of components of the vectors x.
-
void * params
a pointer to the parameters of the function.
-
The following example function defines a simple two-dimensional paraboloid with five parameters,
/* Paraboloid centered on (p[0],p[1]), with scale factors (p[2],p[3]) and minimum p[4] */ double my_f (const gsl_vector *v, void *params) { double x, y; double *p = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); return p[2] * (x - p[0]) * (x - p[0]) + p[3] * (y - p[1]) * (y - p[1]) + p[4]; } /* The gradient of f, df = (df/dx, df/dy). */ void my_df (const gsl_vector *v, void *params, gsl_vector *df) { double x, y; double *p = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); gsl_vector_set(df, 0, 2.0 * p[2] * (x - p[0])); gsl_vector_set(df, 1, 2.0 * p[3] * (y - p[1])); } /* Compute both f and df together. */ void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df) { *f = my_f(x, params); my_df(x, params, df); } |
The function can be initialized using the following code,
gsl_multimin_function_fdf my_func; /* Paraboloid center at (1,2), scale factors (10, 20), minimum value 30 */ double p[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 }; my_func.n = 2; /* number of function components */ my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.params = (void *)p; |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |