[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
36.5 Examples
The following program computes a least squares straight-line fit to a simple dataset, and outputs the best-fit line and its associated one standard-deviation error bars.
#include <stdio.h> #include <gsl/gsl_fit.h> int main (void) { int i, n = 4; double x[4] = { 1970, 1980, 1990, 2000 }; double y[4] = { 12, 11, 14, 13 }; double w[4] = { 0.1, 0.2, 0.3, 0.4 }; double c0, c1, cov00, cov01, cov11, chisq; gsl_fit_wlinear (x, 1, w, 1, y, 1, n, &c0, &c1, &cov00, &cov01, &cov11, &chisq); printf ("# best fit: Y = %g + %g X\n", c0, c1); printf ("# covariance matrix:\n"); printf ("# [ %g, %g\n# %g, %g]\n", cov00, cov01, cov01, cov11); printf ("# chisq = %g\n", chisq); for (i = 0; i < n; i++) printf ("data: %g %g %g\n", x[i], y[i], 1/sqrt(w[i])); printf ("\n"); for (i = -30; i < 130; i++) { double xf = x[0] + (i/100.0) * (x[n-1] - x[0]); double yf, yf_err; gsl_fit_linear_est (xf, c0, c1, cov00, cov01, cov11, &yf, &yf_err); printf ("fit: %g %g\n", xf, yf); printf ("hi : %g %g\n", xf, yf + yf_err); printf ("lo : %g %g\n", xf, yf - yf_err); } return 0; } |
The following commands extract the data from the output of the program
and display it using the GNU plotutils graph
utility,
$ ./demo > tmp $ more tmp # best fit: Y = -106.6 + 0.06 X # covariance matrix: # [ 39602, -19.9 # -19.9, 0.01] # chisq = 0.8 $ for n in data fit hi lo ; do grep "^$n" tmp | cut -d: -f2 > $n ; done $ graph -T X -X x -Y y -y 0 20 -m 0 -S 2 -Ie data -S 0 -I a -m 1 fit -m 2 hi -m 2 lo |
The next program performs a quadratic fit y = c_0 + c_1 x + c_2
x^2 to a weighted dataset using the generalised linear fitting function
gsl_multifit_wlinear
. The model matrix X for a quadratic
fit is given by,
where the column of ones corresponds to the constant term c_0.
The two remaining columns corresponds to the terms c_1 x and
c_2 x^2.
The program reads n lines of data in the format (x, y, err) where err is the error (standard deviation) in the value y.
#include <stdio.h> #include <gsl/gsl_multifit.h> int main (int argc, char **argv) { int i, n; double xi, yi, ei, chisq; gsl_matrix *X, *cov; gsl_vector *y, *w, *c; if (argc != 2) { fprintf (stderr,"usage: fit n < data\n"); exit (-1); } n = atoi (argv[1]); X = gsl_matrix_alloc (n, 3); y = gsl_vector_alloc (n); w = gsl_vector_alloc (n); c = gsl_vector_alloc (3); cov = gsl_matrix_alloc (3, 3); for (i = 0; i < n; i++) { int count = fscanf (stdin, "%lg %lg %lg", &xi, &yi, &ei); if (count != 3) { fprintf (stderr, "error reading file\n"); exit (-1); } printf ("%g %g +/- %g\n", xi, yi, ei); gsl_matrix_set (X, i, 0, 1.0); gsl_matrix_set (X, i, 1, xi); gsl_matrix_set (X, i, 2, xi*xi); gsl_vector_set (y, i, yi); gsl_vector_set (w, i, 1.0/(ei*ei)); } { gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (n, 3); gsl_multifit_wlinear (X, w, y, c, cov, &chisq, work); gsl_multifit_linear_free (work); } #define C(i) (gsl_vector_get(c,(i))) #define COV(i,j) (gsl_matrix_get(cov,(i),(j))) { printf ("# best fit: Y = %g + %g X + %g X^2\n", C(0), C(1), C(2)); printf ("# covariance matrix:\n"); printf ("[ %+.5e, %+.5e, %+.5e \n", COV(0,0), COV(0,1), COV(0,2)); printf (" %+.5e, %+.5e, %+.5e \n", COV(1,0), COV(1,1), COV(1,2)); printf (" %+.5e, %+.5e, %+.5e ]\n", COV(2,0), COV(2,1), COV(2,2)); printf ("# chisq = %g\n", chisq); } gsl_matrix_free (X); gsl_vector_free (y); gsl_vector_free (w); gsl_vector_free (c); gsl_matrix_free (cov); return 0; } |
A suitable set of data for fitting can be generated using the following program. It outputs a set of points with gaussian errors from the curve y = e^x in the region 0 < x < 2.
#include <stdio.h> #include <math.h> #include <gsl/gsl_randist.h> int main (void) { double x; const gsl_rng_type * T; gsl_rng * r; gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); for (x = 0.1; x < 2; x+= 0.1) { double y0 = exp (x); double sigma = 0.1 * y0; double dy = gsl_ran_gaussian (r, sigma); printf ("%g %g %g\n", x, y0 + dy, sigma); } gsl_rng_free(r); return 0; } |
The data can be prepared by running the resulting executable program,
$ ./generate > exp.dat $ more exp.dat 0.1 0.97935 0.110517 0.2 1.3359 0.12214 0.3 1.52573 0.134986 0.4 1.60318 0.149182 0.5 1.81731 0.164872 0.6 1.92475 0.182212 .... |
To fit the data use the previous program, with the number of data points given as the first argument. In this case there are 19 data points.
$ ./fit 19 < exp.dat 0.1 0.97935 +/- 0.110517 0.2 1.3359 +/- 0.12214 ... # best fit: Y = 1.02318 + 0.956201 X + 0.876796 X^2 # covariance matrix: [ +1.25612e-02, -3.64387e-02, +1.94389e-02 -3.64387e-02, +1.42339e-01, -8.48761e-02 +1.94389e-02, -8.48761e-02, +5.60243e-02 ] # chisq = 23.0987 |
The parameters of the quadratic fit match the coefficients of the expansion of e^x, taking into account the errors on the parameters and the O(x^3) difference between the exponential and quadratic functions for the larger values of x. The errors on the parameters are given by the square-root of the corresponding diagonal elements of the covariance matrix. The chi-squared per degree of freedom is 1.4, indicating a reasonable fit to the data.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |