[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
6.11 Global functions
These functions are not methods of mglData
class. However it have additional functionality to handle data. So I put it in this chapter.
- Global function:
mglData
mglTransform (const mglData &
real,const mglData &
imag,const char *
type) - C function:
HMDT
mgl_transform (const HMDT
real,const HMDT
imag,const char *
type) Do integral transformation of complex data real, imag on specified direction. The order of transformations is specified in string type: first character for x-dimension, second one for y-dimension, third one for z-dimension. The possible character are: ‘f’ is forward Fourier transformation, ‘i’ is inverse Fourier transformation, ‘s’ is Sine transform, ‘c’ is Cosine transform, ‘h’ is Hankel transform, ‘n’ or ‘ ’ is no transformation.
- Global function:
mglData
mglTransformAconst mglData &
ampl,const mglData &
phase,const char *
type) - C function:
HMDT
mgl_transform_aconst HMDT
ampl,const HMDT
phase,const char *
type) The same as previous but with specified amplitude ampl and phase phase of complex numbers.
- Global function:
mglData
mglSTFA (const mglData &
real,const mglData &
imag,int
dn,char
dir='x'
) - C function:
HMDT
mgl_data_stfa (const HMDT
real,const HMDT
imag,int
dn,char
dir) Short time Fourier transformation for real and imaginary parts. Output is amplitude of partial Fourier of length dn. For example if dir=‘x’, result will have size {int(nx/dn), dn, ny} and it will contain res[i,j,k]=|\sum_d^dn exp(I*j*d)*(real[i*dn+d,k]+I*imag[i*dn+d,k])|/dn.
- Global function:
mglData
mglPDE (const char *
ham,const mglData &
ini_re,const mglData &
ini_im,mglPoint
Min,mglPoint
Max,float
dz=0.1
,float
k0=100
) - C function:
HMDT
mgl_pde_solve (HMGL
gr,const char *
ham,const HMDT
ini_re,const HMDT
ini_im,float
dz,float
k0) Solves equation du/dz = i*k0*ham(p,q,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters Min, Max set the bounding box for the solution. Note, that really this ranges are increased by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step along evolutionary coordinate z. At this moment, simplified form of function ham is supported – all “mixed” terms (like ‘x*p’->x*d/dx) are excluded. For example, in 2D case this function is effectively ham = f(p,z) + g(x,z,u). However commutable combinations (like ‘x*q’->x*d/dy) are allowed. Here variable ‘u’ is used for field amplitude |u|. This allow one solve nonlinear problems – for example, for nonlinear Shrodinger equation you may set
ham="p^2 + q^2 - u^2"
. You may specify imaginary part for wave absorption, likeham = "p^2 + i*x*(x>0)"
, but only if dependence on variable ‘i’ is linear (i.e. ham = hre+i*him). See section PDE sample, for sample code and picture. See section PDE sample, for sample code and picture.
- Global function:
mglData
mglRay (const char *
ham,mglPoint
r0,mglPoint
p0,float
dt=0.1
,float
tmax=10
) - C function:
HMDT
mgl_ray_trace (const char *
ham,float
x0,float
y0,float
z0,float
px,float
py,float
pz,float
dt,float
tmax) Solves GO ray equation like dr/dt = d ham/dp, dp/dt = -d ham/dr. This is Hamiltonian equations for particle trajectory in 3D case. Here ham is Hamiltonian which may depend on coordinates ‘x’, ‘y’, ‘z’, momentums ‘p’=px, ‘q’=py, ‘v’=pz and time ‘t’: ham = H(x,y,z,p,q,v,t). The starting point (at
t=0
) is defined by variables r0, p0. Parameters dt and tmax specify the integration step and maximal time for ray tracing. Result is array of {x,y,z,p,q,v,t} with dimensions {7 * int(tmax/dt+1) }. See section Beam tracing sample, for sample code and picture.
- Global function:
mglData
mglQO2d (const char *
ham,const mglData &
ini_re,const mglData &
ini_im,const mglData &
ray,float
r=1
,float
k0=100
,mglData *
xx=0
,mglData *
yy=0
,bool
UseR=true
) - C function:
HMDT
mgl_qo2d_solve (const char *
ham,const HMDT
ini_re,const HMDT
ini_im,const HMDT
ray,float
r,float
k0,HMDT
xx,HMDT
yy) Solves equation du/dt = i*k0*ham(p,q,x,y,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators (see
mglPDE()
for details). Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters ray set the reference ray, i.e. the ray around which the accompanied coordinate system will be maked. You may use, for example, the array created bymglRay()
function. Note, that the reference ray must be smooth enough to make accompanied coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and yy are non-zero then Cartesian coordinates for each point will be written into them. See alsomglPDE()
. See section Beam tracing sample, for sample code and picture.
- Global function:
mglData
mglJacobian (const mglData &
x,const mglData &
y) - Global function:
mglData
mglJacobian (const mglData &
x,const mglData &
y,const mglData &
z) - C function:
HMDT
mgl_jacobian_2d (const HMDT
x,const HMDT
y) - C function:
HMDT
mgl_jacobian_3d (const HMDT
x,const HMDT
y,const HMDT
z) Computates the Jacobian for transformation {i,j,k} to {x,y,z} where initial coordinates {i,j,k} are data indexes normalized in range [0,1]. The Jacobian is determined by formula det||dr_\alpha/d\xi_\beta|| where r={x,y,z} and \xi={i,j,k}. All dimensions must be the same for all data arrays. Data must be 3D if all 3 arrays {x,y,z} are specified or 2D if only 2 arrays {x,y} are specified.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |