manpagez: man pages & more
man Digest(3)
Home | html | info | man
Digest(3pm)            Perl Programmers Reference Guide            Digest(3pm)



NAME

       Digest - Modules that calculate message digests


SYNOPSIS

         $md5  = Digest->new("MD5");
         $sha1 = Digest->new("SHA-1");
         $sha256 = Digest->new("SHA-256");
         $sha384 = Digest->new("SHA-384");
         $sha512 = Digest->new("SHA-512");

         $hmac = Digest->HMAC_MD5($key);


DESCRIPTION

       The "Digest::" modules calculate digests, also called "fingerprints" or
       "hashes", of some data, called a message.  The digest is (usually) some
       small/fixed size string.  The actual size of the digest depend of the
       algorithm used.  The message is simply a sequence of arbitrary bytes or
       bits.

       An important property of the digest algorithms is that the digest is
       likely to change if the message change in some way.  Another property
       is that digest functions are one-way functions, that is it should be
       hard to find a message that correspond to some given digest.
       Algorithms differ in how "likely" and how "hard", as well as how
       efficient they are to compute.

       Note that the properties of the algorithms change over time, as the
       algorithms are analyzed and machines grow faster.  If your application
       for instance depends on it being "impossible" to generate the same
       digest for a different message it is wise to make it easy to plug in
       stronger algorithms as the one used grow weaker.  Using the interface
       documented here should make it easy to change algorithms later.

       All "Digest::" modules provide the same programming interface.  A
       functional interface for simple use, as well as an object oriented
       interface that can handle messages of arbitrary length and which can
       read files directly.

       The digest can be delivered in three formats:

       binary  This is the most compact form, but it is not well suited for
               printing or embedding in places that can't handle arbitrary
               data.

       hex     A twice as long string of lowercase hexadecimal digits.

       base64  A string of portable printable characters.  This is the base64
               encoded representation of the digest with any trailing padding
               removed.  The string will be about 30% longer than the binary
               version.  MIME::Base64 tells you more about this encoding.

       The functional interface is simply importable functions with the same
       name as the algorithm.  The functions take the message as argument and
       return the digest.  Example:

         use Digest::MD5 qw(md5);
         $digest = md5($message);

       There are also versions of the functions with "_hex" or "_base64"
       appended to the name, which returns the digest in the indicated form.


OO INTERFACE

       The following methods are available for all "Digest::" modules:

       $ctx = Digest->XXX($arg,...)
       $ctx = Digest->new(XXX => $arg,...)
       $ctx = Digest::XXX->new($arg,...)
           The constructor returns some object that encapsulate the state of
           the message-digest algorithm.  You can add data to the object and
           finally ask for the digest.  The "XXX" should of course be replaced
           by the proper name of the digest algorithm you want to use.

           The two first forms are simply syntactic sugar which automatically
           load the right module on first use.  The second form allow you to
           use algorithm names which contains letters which are not legal perl
           identifiers, e.g. "SHA-1".  If no implementation for the given
           algorithm can be found, then an exception is raised.

           To know what arguments (if any) the constructor takes (the
           "$args,..." above) consult the docs for the specific digest
           implementation.

           If new() is called as an instance method (i.e. $ctx->new) it will
           just reset the state the object to the state of a newly created
           object.  No new object is created in this case, and the return
           value is the reference to the object (i.e. $ctx).

       $other_ctx = $ctx->clone
           The clone method creates a copy of the digest state object and
           returns a reference to the copy.

       $ctx->reset
           This is just an alias for $ctx->new.

       $ctx->add( $data )
       $ctx->add( $chunk1, $chunk2, ... )
           The string value of the $data provided as argument is appended to
           the message we calculate the digest for.  The return value is the
           $ctx object itself.

           If more arguments are provided then they are all appended to the
           message, thus all these lines will have the same effect on the
           state of the $ctx object:

             $ctx->add("a"); $ctx->add("b"); $ctx->add("c");
             $ctx->add("a")->add("b")->add("c");
             $ctx->add("a", "b", "c");
             $ctx->add("abc");

           Most algorithms are only defined for strings of bytes and this
           method might therefore croak if the provided arguments contain
           chars with ordinal number above 255.

       $ctx->addfile( $io_handle )
           The $io_handle is read until EOF and the content is appended to the
           message we calculate the digest for.  The return value is the $ctx
           object itself.

           The addfile() method will croak() if it fails reading data for some
           reason.  If it croaks it is unpredictable what the state of the
           $ctx object will be in. The addfile() method might have been able
           to read the file partially before it failed.  It is probably wise
           to discard or reset the $ctx object if this occurs.

           In most cases you want to make sure that the $io_handle is in
           "binmode" before you pass it as argument to the addfile() method.

       $ctx->add_bits( $data, $nbits )
       $ctx->add_bits( $bitstring )
           The add_bits() method is an alternative to add() that allow partial
           bytes to be appended to the message.  Most users can just ignore
           this method since typical applications involve only whole-byte
           data.

           The two argument form of add_bits() will add the first $nbits bits
           from $data.  For the last potentially partial byte only the high
           order "$nbits % 8" bits are used.  If $nbits is greater than
           "length($data) * 8", then this method would do the same as
           "$ctx->add($data)".

           The one argument form of add_bits() takes a $bitstring of "1" and
           "0" chars as argument.  It's a shorthand for
           "$ctx->add_bits(pack("B*", $bitstring), length($bitstring))".

           The return value is the $ctx object itself.

           This example shows two calls that should have the same effect:

              $ctx->add_bits("111100001010");
              $ctx->add_bits("\xF0\xA0", 12);

           Most digest algorithms are byte based and for these it is not
           possible to add bits that are not a multiple of 8, and the
           add_bits() method will croak if you try.

       $ctx->digest
           Return the binary digest for the message.

           Note that the "digest" operation is effectively a destructive,
           read-once operation. Once it has been performed, the $ctx object is
           automatically "reset" and can be used to calculate another digest
           value.  Call $ctx->clone->digest if you want to calculate the
           digest without resetting the digest state.

       $ctx->hexdigest
           Same as $ctx->digest, but will return the digest in hexadecimal
           form.

       $ctx->b64digest
           Same as $ctx->digest, but will return the digest as a base64
           encoded string without padding.

       $ctx->base64_padded_digest
           Same as $ctx->digest, but will return the digest as a base64
           encoded string.


Digest speed

       This table should give some indication on the relative speed of
       different algorithms.  It is sorted by throughput based on a benchmark
       done with of some implementations of this API:

        Algorithm      Size    Implementation                  MB/s

        MD4            128     Digest::MD4 v1.3               165.0
        MD5            128     Digest::MD5 v2.33               98.8
        SHA-256        256     Digest::SHA2 v1.1.0             66.7
        SHA-1          160     Digest::SHA v4.3.1              58.9
        SHA-1          160     Digest::SHA1 v2.10              48.8
        SHA-256        256     Digest::SHA v4.3.1              41.3
        Haval-256      256     Digest::Haval256 v1.0.4         39.8
        SHA-384        384     Digest::SHA2 v1.1.0             19.6
        SHA-512        512     Digest::SHA2 v1.1.0             19.3
        SHA-384        384     Digest::SHA v4.3.1              19.2
        SHA-512        512     Digest::SHA v4.3.1              19.2
        Whirlpool      512     Digest::Whirlpool v1.0.2        13.0
        MD2            128     Digest::MD2 v2.03                9.5

        Adler-32        32     Digest::Adler32 v0.03            1.3
        CRC-16          16     Digest::CRC v0.05                1.1
        CRC-32          32     Digest::CRC v0.05                1.1
        MD5            128     Digest::Perl::MD5 v1.5           1.0
        CRC-CCITT       16     Digest::CRC v0.05                0.8

       These numbers was achieved Apr 2004 with ActivePerl-5.8.3 running under
       Linux on a P4 2.8 GHz CPU.  The last 5 entries differ by being pure
       perl implementations of the algorithms, which explains why they are so
       slow.


SEE ALSO

       Digest::Adler32(3), Digest::CRC(3), Digest::Haval256(3),
       Digest::HMAC(3), Digest::MD2(3), Digest::MD4(3), Digest::MD5(3),
       Digest::SHA(3), Digest::SHA1(3), Digest::SHA2(3), Digest::Whirlpool(3)

       New digest implementations should consider subclassing from
       Digest::base(3).

       MIME::Base64(3)

       http://en.wikipedia.org/wiki/Cryptographic_hash_function


AUTHOR

       Gisle Aas <gisle@aas.no>

       The "Digest::" interface is based on the interface originally developed
       by Neil Winton for his "MD5" module.

       This library is free software; you can redistribute it and/or modify it
       under the same terms as Perl itself.

           Copyright 1998-2006 Gisle Aas.
           Copyright 1995,1996 Neil Winton.

perl v5.38.2                      2023-11-28                       Digest(3pm)

perl 5.38.2 - Generated Thu Dec 5 07:32:53 CST 2024
© manpagez.com 2000-2024
Individual documents may contain additional copyright information.