manpagez: man pages & more
man Math::BigRat(3)
Home | html | info | man
Math::BigRat(3)       User Contributed Perl Documentation      Math::BigRat(3)



NAME

       Math::BigRat - arbitrary size rational number math package


SYNOPSIS

         use Math::BigRat;

         # Generic constructor method (always returns a new object)

         $x = Math::BigRat->new($str);             # defaults to 0
         $x = Math::BigRat->new('256');            # from decimal
         $x = Math::BigRat->new('0256');           # from decimal
         $x = Math::BigRat->new('0xcafe');         # from hexadecimal
         $x = Math::BigRat->new('0x1.fap+7');      # from hexadecimal
         $x = Math::BigRat->new('0o377');          # from octal
         $x = Math::BigRat->new('0o1.35p+6');      # from octal
         $x = Math::BigRat->new('0b101');          # from binary
         $x = Math::BigRat->new('0b1.101p+3');     # from binary

         # Specific constructor methods (no prefix needed; when used as
         # instance method, the value is assigned to the invocand)

         $x = Math::BigRat->from_dec('234');       # from decimal
         $x = Math::BigRat->from_hex('cafe');      # from hexadecimal
         $x = Math::BigRat->from_hex('1.fap+7');   # from hexadecimal
         $x = Math::BigRat->from_oct('377');       # from octal
         $x = Math::BigRat->from_oct('1.35p+6');   # from octal
         $x = Math::BigRat->from_bin('1101');      # from binary
         $x = Math::BigRat->from_bin('1.101p+3');  # from binary
         $x = Math::BigRat->from_bytes($bytes);    # from byte string
         $x = Math::BigRat->from_base('why', 36);  # from any base
         $x = Math::BigRat->from_base_num([1, 0], 2);  # from any base
         $x = Math::BigRat->from_ieee754($b, $fmt);    # from IEEE-754 bytes
         $x = Math::BigRat->bzero();               # create a +0
         $x = Math::BigRat->bone();                # create a +1
         $x = Math::BigRat->bone('-');             # create a -1
         $x = Math::BigRat->binf();                # create a +inf
         $x = Math::BigRat->binf('-');             # create a -inf
         $x = Math::BigRat->bnan();                # create a Not-A-Number
         $x = Math::BigRat->bpi();                 # returns pi

         $y = $x->copy();        # make a copy (unlike $y = $x)
         $y = $x->as_int();      # return as a Math::BigInt
         $y = $x->as_float();    # return as a Math::BigFloat
         $y = $x->as_rat();      # return as a Math::BigRat

         # Boolean methods (these don't modify the invocand)

         $x->is_zero();          # true if $x is 0
         $x->is_one();           # true if $x is +1
         $x->is_one("+");        # true if $x is +1
         $x->is_one("-");        # true if $x is -1
         $x->is_inf();           # true if $x is +inf or -inf
         $x->is_inf("+");        # true if $x is +inf
         $x->is_inf("-");        # true if $x is -inf
         $x->is_nan();           # true if $x is NaN

         $x->is_finite();        # true if -inf < $x < inf
         $x->is_positive();      # true if $x > 0
         $x->is_pos();           # true if $x > 0
         $x->is_negative();      # true if $x < 0
         $x->is_neg();           # true if $x < 0
         $x->is_non_positive()   # true if $x <= 0
         $x->is_non_negative()   # true if $x >= 0

         $x->is_odd();           # true if $x is odd
         $x->is_even();          # true if $x is even
         $x->is_int();           # true if $x is an integer

         # Comparison methods (these don't modify the invocand)

         $x->bcmp($y);           # compare numbers (undef, < 0, == 0, > 0)
         $x->bacmp($y);          # compare abs values (undef, < 0, == 0, > 0)
         $x->beq($y);            # true if $x == $y
         $x->bne($y);            # true if $x != $y
         $x->blt($y);            # true if $x < $y
         $x->ble($y);            # true if $x <= $y
         $x->bgt($y);            # true if $x > $y
         $x->bge($y);            # true if $x >= $y

         # Arithmetic methods (these modify the invocand)

         $x->bneg();             # negation
         $x->babs();             # absolute value
         $x->bsgn();             # sign function (-1, 0, 1, or NaN)
         $x->bdigitsum();        # sum of decimal digits
         $x->binc();             # increment $x by 1
         $x->bdec();             # decrement $x by 1
         $x->badd($y);           # addition (add $y to $x)
         $x->bsub($y);           # subtraction (subtract $y from $x)
         $x->bmul($y);           # multiplication (multiply $x by $y)
         $x->bmuladd($y, $z);    # $x = $x * $y + $z
         $x->bdiv($y);           # division (floored)
         $x->bmod($y);           # modulus (x % y)
         $x->bmodinv($mod);      # modular multiplicative inverse
         $x->bmodpow($y, $mod);  # modular exponentiation (($x ** $y) % $mod)
         $x->btdiv($y);          # division (truncated), set $x to quotient
         $x->btmod($y);          # modulus (truncated)
         $x->binv()              # inverse (1/$x)
         $x->bpow($y);           # power of arguments (x ** y)
         $x->blog();             # logarithm of $x to base e (Euler's number)
         $x->blog($base);        # logarithm of $x to base $base (e.g., base 2)
         $x->bexp();             # calculate e ** $x where e is Euler's number
         $x->bilog2();           # log2($x) rounded down to nearest int
         $x->bilog10();          # log10($x) rounded down to nearest int
         $x->bclog2();           # log2($x) rounded up to nearest int
         $x->bclog10();          # log10($x) rounded up to nearest int
         $x->bnok($y);           # combinations (binomial coefficient n over k)
         $x->bperm($y);          # permutations
         $x->buparrow($n, $y);   # Knuth's up-arrow notation
         $x->bhyperop($n, $y);   # n'th hyperoprator
         $x->backermann($y);     # the Ackermann function
         $x->bsin();             # sine
         $x->bcos();             # cosine
         $x->batan();            # inverse tangent
         $x->batan2($y);         # two-argument inverse tangent
         $x->bsqrt();            # calculate square root
         $x->broot($y);          # $y'th root of $x (e.g. $y == 3 => cubic root)
         $x->bfac();             # factorial of $x (1*2*3*4*..$x)
         $x->bdfac();            # double factorial of $x ($x*($x-2)*($x-4)*...)
         $x->btfac();            # triple factorial of $x ($x*($x-3)*($x-6)*...)
         $x->bmfac($k);          # $k'th multi-factorial of $x ($x*($x-$k)*...)
         $x->bfib($k);           # $k'th Fibonacci number
         $x->blucas($k);         # $k'th Lucas number

         $x->blsft($n);          # left shift $n places in base 2
         $x->blsft($n, $b);      # left shift $n places in base $b
         $x->brsft($n);          # right shift $n places in base 2
         $x->brsft($n, $b);      # right shift $n places in base $b

         # Bitwise methods (these modify the invocand)

         $x->bblsft($y);         # bitwise left shift
         $x->bbrsft($y);         # bitwise right shift
         $x->band($y);           # bitwise and
         $x->bior($y);           # bitwise inclusive or
         $x->bxor($y);           # bitwise exclusive or
         $x->bnot();             # bitwise not (two's complement)

         # Rounding methods (these modify the invocand)

         $x->round($A, $P, $R);  # round to accuracy or precision using
                                 #   rounding mode $R
         $x->bround($n);         # accuracy: preserve $n digits
         $x->bfround($n);        # $n > 0: round to $nth digit left of dec. point
                                 # $n < 0: round to $nth digit right of dec. point
         $x->bfloor();           # round towards minus infinity
         $x->bceil();            # round towards plus infinity
         $x->bint();             # round towards zero

         # Other mathematical methods (these don't modify the invocand)

         $x->bgcd($y);           # greatest common divisor
         $x->blcm($y);           # least common multiple

         # Object property methods (these don't modify the invocand)

         $x->sign();             # the sign, either +, - or NaN
         $x->digit($n);          # the nth digit, counting from the right
         $x->digit(-$n);         # the nth digit, counting from the left
         $x->digitsum();         # sum of decimal digits
         $x->length();           # return number of digits in number
         $x->mantissa();         # return (signed) mantissa as a Math::BigInt
         $x->exponent();         # return exponent as a Math::BigInt
         $x->parts();            # return (mantissa,exponent) as a Math::BigInt
         $x->sparts();           # mantissa and exponent (as integers)
         $x->nparts();           # mantissa and exponent (normalised)
         $x->eparts();           # mantissa and exponent (engineering notation)
         $x->dparts();           # integer and fraction part
         $x->fparts();           # numerator and denominator
         $x->numerator();        # numerator
         $x->denominator();      # denominator

         # Conversion methods (these don't modify the invocand)

         $x->bstr();             # decimal notation (possibly zero padded)
         $x->bnstr();            # string in normalized notation
         $x->bestr();            # string in engineering notation
         $x->bdstr();            # string in decimal notation (no padding)
         $x->bfstr();            # string in fractional notation

         $x->to_hex();           # as signed hexadecimal string
         $x->to_bin();           # as signed binary string
         $x->to_oct();           # as signed octal string
         $x->to_bytes();         # as byte string
         $x->to_base($b);        # as string in any base
         $x->to_base_num($b);    # as array of integers in any base
         $x->to_ieee754($fmt);   # to bytes encoded according to IEEE 754-2008

         $x->as_hex();           # as signed hexadecimal string with "0x" prefix
         $x->as_bin();           # as signed binary string with "0b" prefix
         $x->as_oct();           # as signed octal string with "0" prefix

         # Other conversion methods (these don't modify the invocand)

         $x->numify();           # return as scalar (might overflow or underflow)


DESCRIPTION

       Math::BigRat complements Math::BigInt and Math::BigFloat by providing
       support for arbitrary big rational numbers.

   Math Library
       You can change the underlying module that does the low-level math
       operations by using:

           use Math::BigRat try => 'GMP';

       Note: This needs Math::BigInt::GMP installed.

       The following would first try to find Math::BigInt::Foo, then
       Math::BigInt::Bar, and when this also fails, revert to
       Math::BigInt::Calc:

           use Math::BigRat try => 'Foo,Math::BigInt::Bar';

       If you want to get warned when the fallback occurs, replace "try" with
       "lib":

           use Math::BigRat lib => 'Foo,Math::BigInt::Bar';

       If you want the code to die instead, replace "try" with "only":

           use Math::BigRat only => 'Foo,Math::BigInt::Bar';


METHODS

       Any methods not listed here are derived from Math::BigFloat (or
       Math::BigInt), so make sure you check these two modules for further
       information.

       new()
               $x = Math::BigRat->new('1/3');

           Create a new Math::BigRat object. Input can come in various forms:

               $x = Math::BigRat->new(123);                            # scalars
               $x = Math::BigRat->new('inf');                          # infinity
               $x = Math::BigRat->new('123.3');                        # float
               $x = Math::BigRat->new('1/3');                          # simple string
               $x = Math::BigRat->new('1 / 3');                        # spaced
               $x = Math::BigRat->new('1 / 0.1');                      # w/ floats
               $x = Math::BigRat->new(Math::BigInt->new(3));           # BigInt
               $x = Math::BigRat->new(Math::BigFloat->new('3.1'));     # BigFloat
               $x = Math::BigRat->new(Math::BigInt::Lite->new('2'));   # BigLite

               # You can also give D and N as different objects:
               $x = Math::BigRat->new(
                       Math::BigInt->new(-123),
                       Math::BigInt->new(7),
                    );                      # => -123/7

       from_dec()
               my $h = Math::BigRat->from_dec("1.2");

           Create a BigRat from a decimal number in string form. It is
           equivalent to "new()", but does not accept anything but strings
           representing finite, decimal numbers.

       from_hex()
               my $h = Math::BigRat->from_hex("0x10");

           Create a BigRat from a hexadecimal number in string form.

       from_oct()
               my $o = Math::BigRat->from_oct("020");

           Create a BigRat from an octal number in string form.

       from_bin()
               my $b = Math::BigRat->from_bin("0b10000000");

           Create a BigRat from an binary number in string form.

       from_bytes()
               $x = Math::BigRat->from_bytes("\xf3\x6b");  # $x = 62315

           Interpret the input as a byte string, assuming big endian byte
           order. The output is always a non-negative, finite integer.

           See "from_bytes()" in Math::BigInt.

       from_ieee754()
               # set $x to 13176795/4194304, the closest value to pi that can be
               # represented in the binary32 (single) format
               $x = Math::BigRat -> from_ieee754("40490fdb", "binary32");

           Interpret the input as a value encoded as described in
           IEEE754-2008.

           See "from_ieee754()" in Math::BigFloat.

       from_base()
           See "from_base()" in Math::BigInt.

       bzero()
               $x = Math::BigRat->bzero();

           Creates a new BigRat object representing zero.  If used on an
           object, it will set it to zero:

               $x->bzero();

       bone()
               $x = Math::BigRat->bone($sign);

           Creates a new BigRat object representing one. The optional argument
           is either '-' or '+', indicating whether you want one or minus one.
           If used on an object, it will set it to one:

               $x->bone();                 # +1
               $x->bone('-');              # -1

       binf()
               $x = Math::BigRat->binf($sign);

           Creates a new BigRat object representing infinity. The optional
           argument is either '-' or '+', indicating whether you want infinity
           or minus infinity.  If used on an object, it will set it to
           infinity:

               $x->binf();
               $x->binf('-');

       bnan()
               $x = Math::BigRat->bnan();

           Creates a new BigRat object representing NaN (Not A Number).  If
           used on an object, it will set it to NaN:

               $x->bnan();

       bpi()
               $x = Math::BigRat -> bpi();         # default accuracy
               $x = Math::BigRat -> bpi(7);        # specified accuracy

           Returns a rational approximation of PI accurate to the specified
           accuracy or the default accuracy if no accuracy is specified. If
           called as an instance method, the value is assigned to the
           invocand.

               $x = Math::BigRat -> bpi(1);        # returns "3"
               $x = Math::BigRat -> bpi(3);        # returns "22/7"
               $x = Math::BigRat -> bpi(7);        # returns "355/113"

       copy()
               my $z = $x->copy();

           Makes a deep copy of the object.

           Please see the documentation in Math::BigInt for further details.

       as_int()
               $y = $x -> as_int();        # $y is a Math::BigInt

           Returns $x as a Math::BigInt object regardless of upgrading and
           downgrading. If $x is finite, but not an integer, $x is truncated.

       as_rat()
               $y = $x -> as_rat();        # $y is a Math::BigRat

           Returns $x a Math::BigRat object regardless of upgrading and
           downgrading. The invocand is not modified.

       as_float()
               $x = Math::BigRat->new('13/7');
               print $x->as_float(), "\n";             # '1'

               $x = Math::BigRat->new('2/3');
               print $x->as_float(5), "\n";            # '0.66667'

           Returns a copy of the object as Math::BigFloat object regardless of
           upgrading and downgrading, preserving the accuracy as wanted, or
           the default of 40 digits.

       bround()/round()/bfround()
           Are not yet implemented.

       is_zero()
               print "$x is 0\n" if $x->is_zero();

           Return true if $x is exactly zero, otherwise false.

       is_one()
               print "$x is 1\n" if $x->is_one();

           Return true if $x is exactly one, otherwise false.

       is_finite()
               $x->is_finite();    # true if $x is not +inf, -inf or NaN

           Returns true if the invocand is a finite number, i.e., it is
           neither +inf, -inf, nor NaN.

       is_positive()
       is_pos()
               print "$x is >= 0\n" if $x->is_positive();

           Return true if $x is positive (greater than or equal to zero),
           otherwise false. Please note that '+inf' is also positive, while
           'NaN' and '-inf' aren't.

           "is_positive()" is an alias for "is_pos()".

       is_negative()
       is_neg()
               print "$x is < 0\n" if $x->is_negative();

           Return true if $x is negative (smaller than zero), otherwise false.
           Please note that '-inf' is also negative, while 'NaN' and '+inf'
           aren't.

           "is_negative()" is an alias for "is_neg()".

       is_odd()
               print "$x is odd\n" if $x->is_odd();

           Return true if $x is odd, otherwise false.

       is_even()
               print "$x is even\n" if $x->is_even();

           Return true if $x is even, otherwise false.

       is_int()
               print "$x is an integer\n" if $x->is_int();

           Return true if $x has a denominator of 1 (e.g. no fraction parts),
           otherwise false. Please note that '-inf', 'inf' and 'NaN' aren't
           integer.

   Comparison methods
       None of these methods modify the invocand object. Note that a "NaN" is
       neither less than, greater than, or equal to anything else, even a
       "NaN".

       bcmp()
               $x->bcmp($y);

           Compares $x with $y and takes the sign into account.  Returns -1,
           0, 1 or undef.

       bacmp()
               $x->bacmp($y);

           Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or
           undef.

       beq()
               $x -> beq($y);

           Returns true if and only if $x is equal to $y, and false otherwise.

       bne()
               $x -> bne($y);

           Returns true if and only if $x is not equal to $y, and false
           otherwise.

       blt()
               $x -> blt($y);

           Returns true if and only if $x is equal to $y, and false otherwise.

       ble()
               $x -> ble($y);

           Returns true if and only if $x is less than or equal to $y, and
           false otherwise.

       bgt()
               $x -> bgt($y);

           Returns true if and only if $x is greater than $y, and false
           otherwise.

       bge()
               $x -> bge($y);

           Returns true if and only if $x is greater than or equal to $y, and
           false otherwise.

       blsft()/brsft()
           Used to shift numbers left/right.

           Please see the documentation in Math::BigInt for further details.

       bneg()
               $x->bneg();

           Used to negate the object in-place.

       bnorm()
               $x->bnorm();

           Reduce the number to the shortest form. This routine is called
           automatically whenever it is needed.

       binc()
               $x->binc();

           Increments $x by 1 and returns the result.

       bdec()
               $x->bdec();

           Decrements $x by 1 and returns the result.

       badd()
               $x->badd($y);

           Adds $y to $x and returns the result.

       bsub()
               $x->bsub($y);

           Subtracts $y from $x and returns the result.

       bmul()
               $x->bmul($y);

           Multiplies $y to $x and returns the result.

       bdiv()
               $q = $x->bdiv($y);
               ($q, $r) = $x->bdiv($y);

           In scalar context, divides $x by $y and returns the result. In list
           context, does floored division (F-division), returning an integer
           $q and a remainder $r so that $x = $q * $y + $r. The remainer
           (modulo) is equal to what is returned by "$x->bmod($y)".

       bmod()
               $x->bmod($y);

           Returns $x modulo $y. When $x is finite, and $y is finite and non-
           zero, the result is identical to the remainder after floored
           division (F-division). If, in addition, both $x and $y are
           integers, the result is identical to the result from Perl's %
           operator.

       binv()
               $x->binv();

           Inverse of $x.

       bsqrt()
               $x->bsqrt();

           Calculate the square root of $x.

       bpow()
               $x->bpow($y);

           Compute $x ** $y.

           Please see the documentation in Math::BigInt for further details.

       broot()
               $x->broot($n);

           Calculate the N'th root of $x.

       bmodpow()
               $num->bmodpow($exp,$mod);           # modular exponentiation
                                                   # ($num**$exp % $mod)

           Returns the value of $num taken to the power $exp in the modulus
           $mod using binary exponentiation.  "bmodpow" is far superior to
           writing

               $num ** $exp % $mod

           because it is much faster - it reduces internal variables into the
           modulus whenever possible, so it operates on smaller numbers.

           "bmodpow" also supports negative exponents.

               bmodpow($num, -1, $mod)

           is exactly equivalent to

               bmodinv($num, $mod)

       bmodinv()
               $x->bmodinv($mod);          # modular multiplicative inverse

           Returns the multiplicative inverse of $x modulo $mod. If

               $y = $x -> copy() -> bmodinv($mod)

           then $y is the number closest to zero, and with the same sign as
           $mod, satisfying

               ($x * $y) % $mod = 1 % $mod

           If $x and $y are non-zero, they must be relative primes, i.e.,
           "bgcd($y, $mod)==1". '"NaN"' is returned when no modular
           multiplicative inverse exists.

       blog()
               $x->blog($base, $accuracy);         # logarithm of x to the base $base

           If $base is not defined, Euler's number (e) is used:

               print $x->blog(undef, 100);         # log(x) to 100 digits

       bexp()
               $x->bexp($accuracy);        # calculate e ** X

           Calculates two integers A and B so that A/B is equal to "e ** $x",
           where "e" is Euler's number.

           This method was added in v0.20 of Math::BigRat (May 2007).

           See also "blog()".

       bnok()
           See "bnok()" in Math::BigInt.

       bperm()
           See "bperm()" in Math::BigInt.

       bfac()
               $x->bfac();

           Calculates the factorial of $x. For instance:

               print Math::BigRat->new('3/1')->bfac(), "\n";   # 1*2*3
               print Math::BigRat->new('5/1')->bfac(), "\n";   # 1*2*3*4*5

           Works currently only for integers.

       band()
               $x->band($y);               # bitwise and

       bior()
               $x->bior($y);               # bitwise inclusive or

       bxor()
               $x->bxor($y);               # bitwise exclusive or

       bnot()
               $x->bnot();                 # bitwise not (two's complement)

       bfloor()
               $x->bfloor();

           Round $x towards minus infinity, i.e., set $x to the largest
           integer less than or equal to $x.

       bceil()
               $x->bceil();

           Round $x towards plus infinity, i.e., set $x to the smallest
           integer greater than or equal to $x.

       bint()
               $x->bint();

           Round $x towards zero.

       bgcd()
               $x -> bgcd($y);             # GCD of $x and $y
               $x -> bgcd($y, $z, ...);    # GCD of $x, $y, $z, ...

           Returns the greatest common divisor (GCD), which is the number with
           the largest absolute value such that $x/$gcd, $y/$gcd, ... is an
           integer. For example, when the operands are 4/5 and 6/5, the GCD is
           2/5. This is a generalisation of the ordinary GCD for integers. See
           "gcd()" in Math::BigInt.

       digit()
               print Math::BigRat->new('123/1')->digit(1);     # 1
               print Math::BigRat->new('123/1')->digit(-1);    # 3

           Return the N'ths digit from X when X is an integer value.

       length()
               $len = $x->length();

           Return the length of $x in digits for integer values.

       parts()
               ($n, $d) = $x->parts();

           Return a list consisting of (signed) numerator and (unsigned)
           denominator as BigInts.

       dparts()
           Returns the integer part and the fraction part.

       fparts()
           Returns the smallest possible numerator and denominator so that the
           numerator divided by the denominator gives back the original value.
           For finite numbers, both values are integers. Mnemonic: fraction.

       numerator()
               $n = $x->numerator();

           Returns a copy of the numerator (the part above the line) as signed
           BigInt.

       denominator()
               $d = $x->denominator();

           Returns a copy of the denominator (the part under the line) as
           positive BigInt.

   String conversion methods
       bstr()
               my $x = Math::BigRat->new('8/4');
               print $x->bstr(), "\n";             # prints 1/2

           Returns a string representing the number.

       bnstr()
           See "bnstr()" in Math::BigInt.

       bestr()
           See "bestr()" in Math::BigInt.

       bdstr()
           See "bdstr()" in Math::BigInt.

       to_bytes()
           See "to_bytes()" in Math::BigInt.

       to_ieee754()
           See "to_ieee754()" in Math::BigFloat.

       as_hex()
               $x = Math::BigRat->new('13');
               print $x->as_hex(), "\n";               # '0xd'

           Returns the BigRat as hexadecimal string. Works only for integers.

       as_oct()
               $x = Math::BigRat->new('13');
               print $x->as_oct(), "\n";               # '015'

           Returns the BigRat as octal string. Works only for integers.

       as_bin()
               $x = Math::BigRat->new('13');
               print $x->as_bin(), "\n";               # '0x1101'

           Returns the BigRat as binary string. Works only for integers.

       numify()
               my $y = $x->numify();

           Returns the object as a scalar. This will lose some data if the
           object cannot be represented by a normal Perl scalar (integer or
           float), so use "as_int()" or "as_float()" instead.

           This routine is automatically used whenever a scalar is required:

               my $x = Math::BigRat->new('3/1');
               @array = (0, 1, 2, 3);
               $y = $array[$x];                # set $y to 3

       config()
               Math::BigRat->config("trap_nan" => 1);      # set
               $accu = Math::BigRat->config("accuracy");   # get

           Set or get configuration parameter values. Read-only parameters are
           marked as RO. Read-write parameters are marked as RW. The following
           parameters are supported.

               Parameter       RO/RW   Description
                                       Example
               ============================================================
               lib             RO      Name of the math backend library
                                       Math::BigInt::Calc
               lib_version     RO      Version of the math backend library
                                       0.30
               class           RO      The class of config you just called
                                       Math::BigRat
               version         RO      version number of the class you used
                                       0.10
               upgrade         RW      To which class numbers are upgraded
                                       undef
               downgrade       RW      To which class numbers are downgraded
                                       undef
               precision       RW      Global precision
                                       undef
               accuracy        RW      Global accuracy
                                       undef
               round_mode      RW      Global round mode
                                       even
               div_scale       RW      Fallback accuracy for div, sqrt etc.
                                       40
               trap_nan        RW      Trap NaNs
                                       undef
               trap_inf        RW      Trap +inf/-inf
                                       undef


NUMERIC LITERALS

       After "use Math::BigRat ':constant'" all numeric literals in the given
       scope are converted to "Math::BigRat" objects. This conversion happens
       at compile time. Every non-integer is convert to a NaN.

       For example,

           perl -MMath::BigRat=:constant -le 'print 2**150'

       prints the exact value of "2**150". Note that without conversion of
       constants to objects the expression "2**150" is calculated using Perl
       scalars, which leads to an inaccurate result.

       Please note that strings are not affected, so that

           use Math::BigRat qw/:constant/;

           $x = "1234567890123456789012345678901234567890"
                   + "123456789123456789";

       does give you what you expect. You need an explicit Math::BigRat->new()
       around at least one of the operands. You should also quote large
       constants to prevent loss of precision:

           use Math::BigRat;

           $x = Math::BigRat->new("1234567889123456789123456789123456789");

       Without the quotes Perl first converts the large number to a floating
       point constant at compile time, and then converts the result to a
       Math::BigRat object at run time, which results in an inaccurate result.

   Hexadecimal, octal, and binary floating point literals
       Perl (and this module) accepts hexadecimal, octal, and binary floating
       point literals, but use them with care with Perl versions before
       v5.32.0, because some versions of Perl silently give the wrong result.
       Below are some examples of different ways to write the number decimal
       314.

       Hexadecimal floating point literals:

           0x1.3ap+8         0X1.3AP+8
           0x1.3ap8          0X1.3AP8
           0x13a0p-4         0X13A0P-4

       Octal floating point literals (with "0" prefix):

           01.164p+8         01.164P+8
           01.164p8          01.164P8
           011640p-4         011640P-4

       Octal floating point literals (with "0o" prefix) (requires v5.34.0):

           0o1.164p+8        0O1.164P+8
           0o1.164p8         0O1.164P8
           0o11640p-4        0O11640P-4

       Binary floating point literals:

           0b1.0011101p+8    0B1.0011101P+8
           0b1.0011101p8     0B1.0011101P8
           0b10011101000p-2  0B10011101000P-2


BUGS

       Please report any bugs or feature requests to "bug-math-bigint at
       rt.cpan.org", or through the web interface at
       <https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> (requires
       login).  We will be notified, and then you'll automatically be notified
       of progress on your bug as I make changes.


SUPPORT

       You can find documentation for this module with the perldoc command.

           perldoc Math::BigInt

       You can also look for information at:

       o   GitHub

           <https://github.com/pjacklam/p5-Math-BigInt>

       o   RT: CPAN's request tracker

           <https://rt.cpan.org/Dist/Display.html?Name=Math-BigInt>

       o   MetaCPAN

           <https://metacpan.org/release/Math-BigInt>

       o   CPAN Testers Matrix

           <http://matrix.cpantesters.org/?dist=Math-BigInt>


LICENSE

       This program is free software; you may redistribute it and/or modify it
       under the same terms as Perl itself.


SEE ALSO

       Math::BigInt(3) and Math::BigFloat(3) as well as the backend libraries
       Math::BigInt::FastCalc(3), Math::BigInt::GMP(3), and
       Math::BigInt::Pari(3), Math::BigInt::GMPz(3), and
       Math::BigInt::BitVect(3).

       The pragmas bigint, bigfloat, and bigrat might also be of interest. In
       addition there is the bignum pragma which does upgrading and
       downgrading.


AUTHORS

       o   Tels <http://bloodgate.com/> 2001-2009.

       o   Maintained by Peter John Acklam <pjacklam@gmail.com> 2011-

perl v5.34.3                      2025-03-27                   Math::BigRat(3)

math-bigint 2.5.1 - Generated Thu Mar 27 07:35:38 CDT 2025
© manpagez.com 2000-2025
Individual documents may contain additional copyright information.