manpagez: man pages & more
man XAllocColor(3)
Home | html | info | man
XAllocColor(3)                  XLIB FUNCTIONS                  XAllocColor(3)




NAME

       XAllocColor,   XAllocNamedColor,  XAllocColorCells,  XAllocColorPlanes,
       XFreeColors - allocate and free colors


SYNTAX

       Status  XAllocColor(Display   *display,   Colormap   colormap,   XColor
              *screen_in_out);

       Status  XAllocNamedColor(Display  *display,  Colormap colormap, _Xconst
              char    *color_name,    XColor    *screen_def_return,     XColor
              *exact_def_return);

       Status  XAllocColorCells(Display *display, Colormap colormap, Bool con-
              tig, unsigned long plane_masks_return[], unsigned  int  nplanes,
              unsigned long pixels_return[], unsigned int npixels);

       Status XAllocColorPlanes(Display *display, Colormap colormap, Bool con-
              tig, unsigned long pixels_return[], int ncolors, int nreds,  int
              ngreens,  int nblues, unsigned long *rmask_return, unsigned long
              *gmask_return, unsigned long *bmask_return);

       int XFreeColors(Display *display, Colormap colormap, unsigned long pix-
              els[], int npixels, unsigned long planes);

       color_name
                 Specifies  the  color  name  string  (for example, red) whose
                 color definition structure you want returned.

       colormap  Specifies the colormap.

       contig    Specifies a Boolean value that indicates whether  the  planes
                 must be contiguous.

       display   Specifies the connection to the X server.

       exact_def_return
                 Returns the exact RGB values.

       ncolors   Specifies  the number of pixel values that are to be returned
                 in the pixels_return array.

       npixels   Specifies the number of pixels.

       nplanes   Specifies the number of plane masks that are to  be  returned
                 in the plane masks array.

       nreds
       ngreens
       nblues
                 Specify the number of red, green, and blue planes.  The value
                 you pass must be nonnegative.

       pixels    Specifies an array of pixel values.

       pixels_return
                 Returns an array of pixel values.

       plane_mask_return
                 Returns an array of plane masks.

       planes    Specifies the planes you want to free.

       rmask_return
       gmask_return
       bmask_return
                 Return bit masks for the red, green, and blue planes.

       screen_def_return
                 Returns the closest RGB values provided by the hardware.

       screen_in_out
                 Specifies and returns the values actually used  in  the  col-
                 ormap.


DESCRIPTION

       The  XAllocColor  function  allocates a read-only colormap entry corre-
       sponding to the closest RGB value supported by the  hardware.   XAlloc-
       Color returns the pixel value of the color closest to the specified RGB
       elements supported by the hardware and returns the RGB  value  actually
       used.  The corresponding colormap cell is read-only.  In addition, XAl-
       locColor returns nonzero if it succeeded or zero if it failed.   Multi-
       ple  clients  that request the same effective RGB value can be assigned
       the same read-only entry, thus allowing entries to be shared.  When the
       last  client deallocates a shared cell, it is deallocated.  XAllocColor
       does not use or affect the flags in the XColor structure.

       XAllocColor can generate a BadColor error.

       The XAllocNamedColor function looks up the named color with respect  to
       the  screen that is associated with the specified colormap.  It returns
       both the exact database definition and the closest color  supported  by
       the screen.  The allocated color cell is read-only.  The pixel value is
       returned in screen_def_return.  If the color name is not  in  the  Host
       Portable  Character  Encoding,  the result is implementation-dependent.
       Use of uppercase or lowercase does not  matter.   If  screen_def_return
       and  exact_def_return point to the same structure, the pixel field will
       be set correctly, but the color values are undefined.  XAllocNamedColor
       returns nonzero if a cell is allocated; otherwise, it returns zero.

       XAllocNamedColor can generate a BadColor error.

       The  XAllocColorCells  function  allocates read/write color cells.  The
       number of colors must be positive and the number of planes nonnegative,
       or  a  BadValue  error  results.  If ncolors and nplanes are requested,
       then ncolors pixels and nplane plane masks are returned.  No mask  will
       have any bits set to 1 in common with any other mask or with any of the
       pixels.  By ORing together each pixel with zero or more masks,  ncolors
       * 2nplanes distinct pixels can be produced.  All of these are allocated
       writable by the request.  For GrayScale or PseudoColor, each  mask  has
       exactly one bit set to 1.  For DirectColor, each has exactly three bits
       set to 1.  If contig is True and if all masks are ORed together, a sin-
       gle  contiguous  set  of  bits set to 1 will be formed for GrayScale or
       PseudoColor and three contiguous sets of bits set to 1 (one within each
       pixel  subfield)  for  DirectColor.   The  RGB  values of the allocated
       entries are undefined.  XAllocColorCells returns  nonzero  if  it  suc-
       ceeded or zero if it failed.

       XAllocColorCells can generate BadColor and BadValue errors.

       The  specified ncolors must be positive; and nreds, ngreens, and nblues
       must be nonnegative, or a BadValue error results.  If  ncolors  colors,
       nreds  reds,  ngreens  greens,  and nblues blues are requested, ncolors
       pixels are returned; and the masks have nreds, ngreens, and nblues bits
       set  to 1, respectively.  If contig is True, each mask will have a con-
       tiguous set of bits set to 1.  No mask will have any bits set to  1  in
       common with any other mask or with any of the pixels.  For DirectColor,
       each mask will lie within the corresponding pixel subfield.   By  ORing
       together   subsets   of   masks   with  each  pixel  value,  ncolors  *
       2(nreds+ngreens+nblues) distinct pixel values can be produced.  All  of
       these  are  allocated  by the request.  However, in the colormap, there
       are only ncolors * 2nreds independent red entries, ncolors  *  2ngreens
       independent  green  entries,  and  ncolors  *  2nblues independent blue
       entries.  This is true even for PseudoColor.  When the  colormap  entry
       of  a  pixel  value  is  changed  (using  XStoreColors, XStoreColor, or
       XStoreNamedColor), the pixel is decomposed according to the masks,  and
       the  corresponding  independent entries are updated.  XAllocColorPlanes
       returns nonzero if it succeeded or zero if it failed.

       XAllocColorPlanes can generate BadColor and BadValue errors.

       The XFreeColors function frees the cells represented  by  pixels  whose
       values  are  in  the pixels array.  The planes argument should not have
       any bits set to 1 in common with any of the pixels.   The  set  of  all
       pixels  is  produced  by  ORing together subsets of the planes argument
       with the pixels.  The request frees all of these pixels that were allo-
       cated  by the client (using XAllocColor, XAllocNamedColor, XAllocColor-
       Cells, and XAllocColorPlanes).  Note that freeing an  individual  pixel
       obtained  from XAllocColorPlanes may not actually allow it to be reused
       until all of its related pixels are also freed.  Similarly, a read-only
       entry is not actually freed until it has been freed by all clients, and
       if a client allocates the same read-only entry multiple times, it  must
       free the entry that many times before the entry is actually freed.

       All  specified  pixels that are allocated by the client in the colormap
       are freed, even if one or more pixels produce an error.  If a specified
       pixel is not a valid index into the colormap, a BadValue error results.
       If a specified pixel is not allocated by the client (that is, is  unal-
       located  or is only allocated by another client) or if the colormap was
       created with all entries writable (by passing AllocAll  to  XCreateCol-
       ormap), a BadAccess error results.  If more than one pixel is in error,
       the one that gets reported is arbitrary.

       XFreeColors can generate BadAccess, BadColor, and BadValue errors.


DIAGNOSTICS

       BadAccess A client attempted to free a color map entry that it did  not
                 already allocate.

       BadAccess A client attempted to store into a read-only color map entry.

       BadColor  A value for a Colormap argument does not name a defined  Col-
                 ormap.

       BadValue  Some numeric value falls outside the range of values accepted
                 by the request.  Unless a specific range is specified for  an
                 argument,  the  full  range defined by the argument's type is
                 accepted.  Any argument defined as a set of alternatives  can
                 generate this error.


SEE ALSO

       XCreateColormap(3), XQueryColor(3), XStoreColors(3)
       Xlib - C Language X Interface



X Version 11                     libX11 1.7.1                   XAllocColor(3)

xorg-libX11 1.7.1 - Generated Wed May 19 08:02:51 CDT 2021
© manpagez.com 2000-2025
Individual documents may contain additional copyright information.