csqrt(3) BSD Library Functions Manual csqrt(3)
NAME
csqrt -- complex square root function
SYNOPSIS
#include <complex.h> double complex csqrt(double complex z); long double complex csqrtl(long double complex z); float complex csqrtf(float complex z);
DESCRIPTION
csqrt(z) computes the square root of the complex floating-point number z, with a branch cut on the negative real axis. The result is in the right half-plane, including the imaginary axis. For all complex z, csqrt(conj(z)) = conj(csqrt(z)).
SPECIAL VALUES
The conjugate symmetry of csqrt() is used to abbreviate the specification of special values. csqrt(+-0 + 0i) returns +0 + 0i. csqrt(x + inf i) returns inf + inf i for all x (including NaN). csqrt(x + NaN i) returns NaN + NaN i. csqrt(-inf + yi) returns 0 + inf i for any positively-signed finite y. csqrt(inf + yi) returns inf + 0i for any positively-signed finite y. csqrt(-inf + NaN i) returns NaN + inf i. csqrt(inf + NaN i) returns inf + NaN i. csqrt(NaN + yi) returns NaN + NaN i. csqrt(NaN + NaN i) returns NaN + NaN i.
NOTES
If z is in the upper half-plane, then csqrt(z) is in the upper-right quadrant of the complex plane. If z is in the lower half-plane, then csqrt(z) is in the lower-right quadrant of the complex plane.
SEE ALSO
complex(3)
STANDARDS
The csqrt() function conforms to ISO/IEC 9899:2011. 4th Berkeley Distribution December 11, 2006 4th Berkeley Distribution
Mac OS X 10.9.1 - Generated Tue Jan 7 08:41:40 CST 2014