tcp(4) BSD Kernel Interfaces Manual tcp(4)
NAME
tcp -- Internet Transmission Control Protocol
SYNOPSIS
#include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> int socket(AF_INET, SOCK_STREAM, 0);
DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses the standard Internet address format and, in addi- tion, provides a per-host collection of ``port addresses''. Thus, each address is composed of an Internet address specifying the host and net- work, with a specific TCP port on the host identifying the peer entity. Sockets utilizing the TCP protocol are either ``active'' or ``passive''. Active sockets initiate connections to passive sockets. By default, TCP sockets are created active; to create a passive socket, the listen(2) system call must be used after binding the socket with the bind(2) system call. Only passive sockets may use the accept(2) call to accept incoming connections. Only active sockets may use the connect(2) call to initiate connections. Passive sockets may ``underspecify'' their location to match incoming connection requests from multiple networks. This technique, termed ``wildcard addressing'', allows a single server to provide service to clients on multiple networks. To create a socket which listens on all networks, the Internet address INADDR_ANY must be bound. The TCP port may still be specified at this time; if the port is not specified, the system will assign one. Once a connection has been established, the socket's address is fixed by the peer entity's location. The address assigned to the socket is the address associated with the network inter- face through which packets are being transmitted and received. Normally, this address corresponds to the peer entity's network. TCP supports a number of socket options which can be set with setsockopt(2) and tested with getsockopt(2): TCP_NODELAY Under most circumstances, TCP sends data when it is presented; when outstanding data has not yet been acknowledged, it gathers small amounts of output to be sent in a single packet once an acknowledgement is received. For a small number of clients, such as window systems that send a stream of mouse events which receive no replies, this packetization may cause significant delays. The boolean option TCP_NODELAY defeats this algo- rithm. TCP_MAXSEG By default, a sender- and receiver-TCP will nego- tiate among themselves to determine the maximum segment size to be used for each connection. The TCP_MAXSEG option allows the user to determine the result of this negotiation, and to reduce it if desired. TCP_NOOPT TCP usually sends a number of options in each packet, corresponding to various TCP extensions which are provided in this implementation. The boolean option TCP_NOOPT is provided to disable TCP option use on a per-connection basis. TCP_NOPUSH By convention, the sender-TCP will set the ``push'' bit, and begin transmission immediately (if permitted) at the end of every user call to write(2) or writev(2). When this option is set to a non-zero value, TCP will delay sending any data at all until either the socket is closed, or the internal send buffer is filled. TCP_KEEPALIVE The TCP_KEEPALIVE options enable to specify the amount of time, in seconds, that the connection must be idle before keepalive probes (if enabled) are sent. The default value is specified by the MIB variable net.inet.tcp.keepidle. TCP_CONNECTIONTIMEOUT The TCP_CONNECTIONTIMEOUT option allows to specify the timeout, in seconds, for new, non established TCP connections. This option can be useful for both active and passive TCP connections. The default value is specified by the MIB variable net.inet.tcp.keepinit. The option level for the setsockopt(2) call is the protocol number for TCP, available from getprotobyname(3), or IPPROTO_TCP. All options are declared in <netinet/tcp.h>. Options at the IP transport level may be used with TCP; see ip(4). Incoming connection requests that are source-routed are noted, and the reverse source route is used in responding. Non-blocking connect When a TCP socket is set non-blocking, and the connection cannot be established immediately, connect(2) returns with the error EINPROGRESS, and the connection is established asynchronously. When the asynchronous connection completes successfully, select(2) or poll(2) or kqueue(2) will indicate the file descriptor is ready for writ- ing. If the connection encounters an error, the file descriptor is marked ready for both reading and writing, and the pending error can be retrieved via the socket option SO_ERROR. Note that even if the socket is non-blocking, it is possible for the con- nection to be established immediately. In that case connect(2) does not return with EINPROGRESS.
DIAGNOSTICS
A socket operation may fail with one of the following errors returned: [EISCONN] when trying to establish a connection on a socket which already has one; [ENOBUFS] when the system runs out of memory for an internal data structure; [ETIMEDOUT] when a connection was dropped due to excessive retransmissions; [ECONNRESET] when the remote peer forces the connection to be closed; [ECONNREFUSED] when the remote peer actively refuses connection establishment (usually because no process is listening to the port); [EADDRINUSE] when an attempt is made to create a socket with a port which has already been allocated; [EADDRNOTAVAIL] when an attempt is made to create a socket with a net- work address for which no network interface exists; [EAFNOSUPPORT] when an attempt is made to bind or connect a socket to a multicast address; [EINPROGRESS] returned by connect(2) when the socket is set non- blocking, and the connection cannot be immediately established; [EALREADY] returned by connect(2) when connection request is already in progress for the specified socket.
SEE ALSO
connect(2), getsockopt(2), kqueue(2), poll(2), select(2), socket(2), sysctl(3), inet(4), inet6(4), ip(4), ip6(4), netintro(4), setkey(8)
HISTORY
The TCP protocol appeared in 4.2BSD. The socket option TCP_CONNECTIONTIMEOUT first appeared in Mac OS X 10.6. 4.2 Berkeley Distribution February 28, 2007 4.2 Berkeley Distribution
Mac OS X 10.9 - Generated Wed Oct 16 18:09:26 CDT 2013