manpagez: man pages & more
info asymptote
Home | html | info | man
[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.36 contour

This package draws contour lines. To construct contours corresponding to the values in an array c for a function f on box(a,b), use

guide[][] contour(real f(real, real), pair a, pair b,
                  real[] c, int nx=ngraph, int ny=nx,
                  interpolate join=operator --);

The integers nx and ny define the resolution. The default resolution, ngraph x ngraph (here ngraph defaults to 100), can be increased for greater accuracy. The default interpolation operator is operator -- (linear). Spline interpolation (operator ..) may produce smoother contours but it can also lead to overshooting.

To construct contours for an array of data values on a uniform two-dimensional lattice on box(a,b), use

guide[][] contour(real[][] f, real[][] midpoint=new real[][],
                  pair a, pair b, real[] c,
                  interpolate join=operator --);

To construct contours for an array of data values on a nonoverlapping regular mesh specified by the two-dimensional array z, optionally specifying the values of f at the mesh midpoints, use

guide[][] contour(pair[][] z, real[][] f,
                  real[][] midpoint=new real[][], real[] c,
                  interpolate join=operator --);

To construct contours for an array of values f specified at irregularly positioned points z, use the routine

guide[][] contour(pair[] z, real[] f, real[] c,
                  interpolate join=operator --);

The contours themselves can be drawn with one of the routines

void draw(picture pic=currentpicture, Label[] L=new Label[],
          guide[][] g, pen p=currentpen)

void draw(picture pic=currentpicture, Label[] L=new Label[],
          guide[][] g, pen[] p)

The following simple example draws the contour at value 1 for the function z=x^2+y^2, which is a unit circle:

import contour;
size(75);

real f(real a, real b) {return a^2+b^2;}
draw(contour(f,(-1,-1),(1,1),new real[] {1}));

onecontour

The next example draws and labels multiple contours for the function z=x^2-y^2 with the resolution 100 x 100, using a dashed pen for negative contours and a solid pen for positive (and zero) contours:

import contour;

size(200);

real f(real x, real y) {return x^2-y^2;}
int n=10;
real[] c=new real[n];
for(int i=0; i < n; ++i) c[i]=(i-n/2)/n;

pen[] p=sequence(new pen(int i) {
    return (c[i] >= 0 ? solid : dashed)+fontsize(6);
  },c.length);

Label[] Labels=sequence(new Label(int i) {
    return Label(c[i] != 0 ? (string) c[i] : "",Relative(unitrand()),(0,0),
                 UnFill(1bp));
  },c.length);

draw(Labels,contour(f,(-1,-1),(1,1),c),p);

multicontour

The next example illustrates how contour lines can be drawn on color density images:

import graph;
import palette;
import contour;

size(10cm,10cm,IgnoreAspect);

pair a=(0,0);
pair b=(2pi,2pi);

real f(real x, real y) {return cos(x)*sin(y);}

int N=200;
int Divs=10;
int divs=2;

defaultpen(1bp);
pen Tickpen=black;
pen tickpen=gray+0.5*linewidth(currentpen);
pen[] Palette=BWRainbow();

scale(false);

bounds range=image(f,Automatic,a,b,N,Palette);
    
// Major contours

real[] Cvals=uniform(range.min,range.max,Divs);
draw(contour(f,a,b,Cvals,N,operator --),Tickpen);

// Minor contours
real[] cvals;
for(int i=0; i < Cvals.length-1; ++i)
  cvals.append(uniform(Cvals[i],Cvals[i+1],divs)[1:divs]);
draw(contour(f,a,b,cvals,N,operator --),tickpen);

xaxis("$x$",BottomTop,LeftTicks,above=true);
yaxis("$y$",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,point(NW)+(0,0.5),point(NE)+(0,1),Top,Palette,
        PaletteTicks(N=Divs,n=divs,Tickpen,tickpen));

imagecontour

Finally, here is an example that illustrates the construction of contours from irregularly spaced data:

import contour;

size(200);

int n=100;

pair[] points=new pair[n];
real[] values=new real[n];

real f(real a, real b) {return a^2+b^2;}

real r() {return 1.1*(rand()/randMax*2-1);}

for(int i=0; i < n; ++i) {
  points[i]=(r(),r());
  values[i]=f(points[i].x,points[i].y);
}

draw(contour(points,values,new real[]{0.25,0.5,1},operator ..),blue);

irregularcontour

In the above example, the contours of irregularly spaced data are constructed by first creating a triangular mesh from an array z of pairs:

int[][] triangulate(pair[] z);
size(200);
int np=100;
pair[] points;

real r() {return 1.2*(rand()/randMax*2-1);}

for(int i=0; i < np; ++i)
  points.push((r(),r()));

int[][] trn=triangulate(points);

for(int i=0; i < trn.length; ++i) {
  draw(points[trn[i][0]]--points[trn[i][1]]);
  draw(points[trn[i][1]]--points[trn[i][2]]);
  draw(points[trn[i][2]]--points[trn[i][0]]);
}

for(int i=0; i < np; ++i)
  dot(points[i],red);

triangulate

The example Gouraudcontour illustrates how to produce color density images over such irregular triangular meshes. Asymptote uses a robust version of Paul Bourke's Delaunay triangulation algorithm based on the public-domain exact arithmetic predicates written by Jonathan Shewchuk.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]
© manpagez.com 2000-2025
Individual documents may contain additional copyright information.