| Index Entry | Section |
|
D | | |
| Daubechies wavelets | 30.2 Initialization |
| Dawson function | 7.9 Dawson Function |
| DAXPY, Level-1 BLAS | 12.1.1 Level 1 |
| debugging numerical programs | A.1 Using gdb |
| Debye functions | 7.10 Debye Functions |
| denormalized form, IEEE format | 40.1 Representation of floating point numbers |
| deprecated functions | 2.13 Deprecated Functions |
| derivatives, calculating numerically | 27. Numerical Differentiation |
| determinant of a matrix, by LU decomposition | 13.1 LU Decomposition |
| Deuflhard and Bader, Bulirsch-Stoer method. | 25.2 Stepping Functions |
| DFTs, see FFT | 15. Fast Fourier Transforms (FFTs) |
| diagonal, of a matrix | 8.4.6 Creating row and column views |
| differential equations, initial value problems | 25. Ordinary Differential Equations |
| differentiation of functions, numeric | 27. Numerical Differentiation |
| digamma function | 7.28 Psi (Digamma) Function |
| dilogarithm | 7.11 Dilogarithm |
| direction vector, random 2D | 19.23 Spherical Vector Distributions |
| direction vector, random 3D | 19.23 Spherical Vector Distributions |
| direction vector, random N-dimensional | 19.23 Spherical Vector Distributions |
| Dirichlet distribution | 19.27 The Dirichlet Distribution |
| discontinuities, in ODE systems | 25.4 Evolution |
| Discrete Fourier Transforms, see FFT | 15. Fast Fourier Transforms (FFTs) |
| discrete Hankel transforms | 31. Discrete Hankel Transforms |
| Discrete Newton algorithm for multidimensional roots | 34.7 Algorithms without Derivatives |
| Discrete random numbers | 19.28 General Discrete Distributions |
| Discrete random numbers | 19.28 General Discrete Distributions |
| Discrete random numbers | 19.28 General Discrete Distributions |
| Discrete random numbers | 19.28 General Discrete Distributions |
| Discrete random numbers, preprocessing | 19.28 General Discrete Distributions |
| divided differences, polynomials | 6.2 Divided Difference Representation of Polynomials |
| division by zero, IEEE exceptions | 40.2 Setting up your IEEE environment |
| dollar sign $ , shell prompt | 1.7 Conventions used in this manual |
| DOT, Level-1 BLAS | 12.1.1 Level 1 |
| double factorial | 7.19.2 Factorials |
| double precision, IEEE format | 40.1 Representation of floating point numbers |
| downloading GSL | 1.3 Obtaining GSL |
| DWT initialization | 30.2 Initialization |
| DWT, mathematical definition | 30.1 Definitions |
| DWT, one dimensional | 30.3.1 Wavelet transforms in one dimension |
| DWT, see wavelet transforms | 30. Wavelet Transforms |
| DWT, two dimensional | 30.3.2 Wavelet transforms in two dimension |
|
E | | |
| e, defined as a macro | 4.1 Mathematical Constants |
| E1(x), E2(x), Ei(x) | 7.17.1 Exponential Integral |
| eigenvalues and eigenvectors | 14. Eigensystems |
| elementary functions | 4. Mathematical Functions |
| elementary operations | 7.12 Elementary Operations |
| elliptic functions (Jacobi) | 7.14 Elliptic Functions (Jacobi) |
| elliptic integrals | 7.13 Elliptic Integrals |
| energy function | 24. Simulated Annealing |
| energy, units of | 39.10 Thermal Energy and Power |
| erf(x) | 7.15 Error Functions |
| erfc(x) | 7.15 Error Functions |
| Erlang distribution | 19.14 The Gamma Distribution |
| error codes | 3.2 Error Codes |
| error codes, reserved | 3.2 Error Codes |
| error function | 7.15 Error Functions |
| Error handlers | 3.3 Error Handlers |
| error handling | 3. Error Handling |
| error handling macros | 3.4 Using GSL error reporting in your own functions |
| Errors | 3. Error Handling |
| estimated standard deviation | 20. Statistics |
| estimated variance | 20. Statistics |
| euclidean distance function, hypot | 4.3 Elementary Functions |
| euclidean distance function, hypot | 4.3 Elementary Functions |
| Euler's constant, defined as a macro | 4.1 Mathematical Constants |
| evaluation of polynomials | 6.1 Polynomial Evaluation |
| evaluation of polynomials, in divided difference form | 6.2 Divided Difference Representation of Polynomials |
| examples, conventions used in | 1.7 Conventions used in this manual |
| exceptions, C++ | 2.10 Compatibility with C++ |
| exceptions, IEEE arithmetic | 40.2 Setting up your IEEE environment |
| exchanging permutation elements | 9.3 Accessing permutation elements |
| exp | 7.16 Exponential Functions |
| expm1 | 4.3 Elementary Functions |
| exponent, IEEE format | 40.1 Representation of floating point numbers |
| Exponential distribution | 19.5 The Exponential Distribution |
| exponential function | 7.16 Exponential Functions |
| exponential integrals | 7.17 Exponential Integrals |
| Exponential power distribution | 19.7 The Exponential Power Distribution |
| exponential, difference from 1 computed accurately | 4.3 Elementary Functions |
| exponentiation of complex number | 5.4 Elementary Complex Functions |
| extern inline | 2.5 Inline functions |
|
F | | |
| F-distribution | 19.18 The F-distribution |
| factorial | 7.19.2 Factorials |
| factorial | 7.19.2 Factorials |
| factorization of matrices | 13. Linear Algebra |
| false position algorithm for finding roots | 32.8 Root Bracketing Algorithms |
| Fast Fourier Transforms, see FFT | 15. Fast Fourier Transforms (FFTs) |
| Fehlberg method, differential equations | 25.2 Stepping Functions |
| Fermi-Dirac function | 7.18 Fermi-Dirac Function |
| FFT | 15. Fast Fourier Transforms (FFTs) |
| FFT mathematical definition | 15.1 Mathematical Definitions |
| FFT of complex data, mixed-radix algorithm | 15.4 Mixed-radix FFT routines for complex data |
| FFT of complex data, radix-2 algorithm | 15.3 Radix-2 FFT routines for complex data |
| FFT of real data | 15.5 Overview of real data FFTs |
| FFT of real data, mixed-radix algorithm | 15.7 Mixed-radix FFT routines for real data |
| FFT of real data, radix-2 algorithm | 15.6 Radix-2 FFT routines for real data |
| FFT, complex data | 15.2 Overview of complex data FFTs |
| finding minima | 33. One dimensional Minimization |
| finding roots | 32. One dimensional Root-Finding |
| finding zeros | 32. One dimensional Root-Finding |
| fits, multi-parameter linear | 36.4 Multi-parameter fitting |
| fitting | 36. Least-Squares Fitting |
| fitting, using Chebyshev polynomials | 28. Chebyshev Approximations |
| Fj(x), Fermi-Dirac integral | 7.18.1 Complete Fermi-Dirac Integrals |
| Fj(x,b), incomplete Fermi-Dirac integral | 7.18.2 Incomplete Fermi-Dirac Integrals |
| flat distribution | 19.15 The Flat (Uniform) Distribution |
| Fletcher-Reeves conjugate gradient algorithm, minimization | 35.7 Algorithms with Derivatives |
| floating point numbers, approximate comparison | 4.8 Approximate Comparison of Floating Point Numbers |
| force and energy, units of | 39.15 Force and Energy |
| Fortran range checking, equivalent in gcc | 8.3.2 Accessing vector elements |
| Four-tap Generalized Feedback Shift Register | 17.9 Random number generator algorithms |
| Fourier integrals, numerical | 16.10 QAWF adaptive integration for Fourier integrals |
| Fourier Transforms, see FFT | 15. Fast Fourier Transforms (FFTs) |
| Fractional Order Bessel Functions | 7.5.9 Regular Bessel Function—Fractional Order |
| free documentation | Free Software Needs Free Documentation |
| free software, explanation of | 1.2 GSL is Free Software |
| frexp | 4.3 Elementary Functions |
| functions, numerical differentiation | 27. Numerical Differentiation |
| fundamental constants | 39.1 Fundamental Constants |
|