manpagez: man pages & more
html files: glib
Home | html | info | man

Memory Allocation

Memory Allocation — general memory-handling

Types and Values

extern gboolean g_mem_gc_friendly
struct GMemVTable
extern GMemVTable * glib_mem_profiler_table

Includes

#include <glib.h>

Description

These functions provide support for allocating and freeing memory.

If any call to allocate memory fails, the application is terminated. This also means that there is no need to check if the call succeeded.

It's important to match g_malloc() (and wrappers such as g_new()) with g_free(), g_slice_alloc() and wrappers such as g_slice_new()) with g_slice_free(), plain malloc() with free(), and (if you're using C++) new with delete and new[] with delete[]. Otherwise bad things can happen, since these allocators may use different memory pools (and new/delete call constructors and destructors). See also g_mem_set_vtable().

Functions

g_new()

#define             g_new(struct_type, n_structs)

Allocates n_structs elements of type struct_type . The returned pointer is cast to a pointer to the given type. If n_structs is 0 it returns NULL. Care is taken to avoid overflow when calculating the size of the allocated block.

Since the returned pointer is already casted to the right type, it is normally unnecessary to cast it explicitly, and doing so might hide memory allocation errors.

Parameters

struct_type

the type of the elements to allocate

 

n_structs

the number of elements to allocate

 

Returns

a pointer to the allocated memory, cast to a pointer to struct_type


g_new0()

#define             g_new0(struct_type, n_structs)

Allocates n_structs elements of type struct_type , initialized to 0's. The returned pointer is cast to a pointer to the given type. If n_structs is 0 it returns NULL. Care is taken to avoid overflow when calculating the size of the allocated block.

Since the returned pointer is already casted to the right type, it is normally unnecessary to cast it explicitly, and doing so might hide memory allocation errors.

Parameters

struct_type

the type of the elements to allocate.

 

n_structs

the number of elements to allocate.

 

Returns

a pointer to the allocated memory, cast to a pointer to struct_type .


g_renew()

#define             g_renew(struct_type, mem, n_structs)

Reallocates the memory pointed to by mem , so that it now has space for n_structs elements of type struct_type . It returns the new address of the memory, which may have been moved. Care is taken to avoid overflow when calculating the size of the allocated block.

Parameters

struct_type

the type of the elements to allocate

 

mem

the currently allocated memory

 

n_structs

the number of elements to allocate

 

Returns

a pointer to the new allocated memory, cast to a pointer to struct_type


g_try_new()

#define             g_try_new(struct_type, n_structs)

Attempts to allocate n_structs elements of type struct_type , and returns NULL on failure. Contrast with g_new(), which aborts the program on failure. The returned pointer is cast to a pointer to the given type. The function returns NULL when n_structs is 0 of if an overflow occurs.

Parameters

struct_type

the type of the elements to allocate

 

n_structs

the number of elements to allocate

 

Returns

a pointer to the allocated memory, cast to a pointer to struct_type

Since 2.8


g_try_new0()

#define             g_try_new0(struct_type, n_structs)

Attempts to allocate n_structs elements of type struct_type , initialized to 0's, and returns NULL on failure. Contrast with g_new0(), which aborts the program on failure. The returned pointer is cast to a pointer to the given type. The function returns NULL when n_structs is 0 of if an overflow occurs.

Parameters

struct_type

the type of the elements to allocate

 

n_structs

the number of elements to allocate

 

Returns

a pointer to the allocated memory, cast to a pointer to struct_type

Since 2.8


g_try_renew()

#define             g_try_renew(struct_type, mem, n_structs)

Attempts to reallocate the memory pointed to by mem , so that it now has space for n_structs elements of type struct_type , and returns NULL on failure. Contrast with g_renew(), which aborts the program on failure. It returns the new address of the memory, which may have been moved. The function returns NULL if an overflow occurs.

Parameters

struct_type

the type of the elements to allocate

 

mem

the currently allocated memory

 

n_structs

the number of elements to allocate

 

Returns

a pointer to the new allocated memory, cast to a pointer to struct_type

Since 2.8


g_malloc ()

gpointer
g_malloc (gsize n_bytes);

Allocates n_bytes bytes of memory. If n_bytes is 0 it returns NULL.

Parameters

n_bytes

the number of bytes to allocate

 

Returns

a pointer to the allocated memory


g_malloc0 ()

gpointer
g_malloc0 (gsize n_bytes);

Allocates n_bytes bytes of memory, initialized to 0's. If n_bytes is 0 it returns NULL.

Parameters

n_bytes

the number of bytes to allocate

 

Returns

a pointer to the allocated memory


g_realloc ()

gpointer
g_realloc (gpointer mem,
           gsize n_bytes);

Reallocates the memory pointed to by mem , so that it now has space for n_bytes bytes of memory. It returns the new address of the memory, which may have been moved. mem may be NULL, in which case it's considered to have zero-length. n_bytes may be 0, in which case NULL will be returned and mem will be freed unless it is NULL.

Parameters

mem

the memory to reallocate.

[allow-none]

n_bytes

new size of the memory in bytes

 

Returns

the new address of the allocated memory


g_try_malloc ()

gpointer
g_try_malloc (gsize n_bytes);

Attempts to allocate n_bytes , and returns NULL on failure. Contrast with g_malloc(), which aborts the program on failure.

Parameters

n_bytes

number of bytes to allocate.

 

Returns

the allocated memory, or NULL.


g_try_malloc0 ()

gpointer
g_try_malloc0 (gsize n_bytes);

Attempts to allocate n_bytes , initialized to 0's, and returns NULL on failure. Contrast with g_malloc0(), which aborts the program on failure.

Parameters

n_bytes

number of bytes to allocate

 

Returns

the allocated memory, or NULL

Since 2.8


g_try_realloc ()

gpointer
g_try_realloc (gpointer mem,
               gsize n_bytes);

Attempts to realloc mem to a new size, n_bytes , and returns NULL on failure. Contrast with g_realloc(), which aborts the program on failure. If mem is NULL, behaves the same as g_try_malloc().

Parameters

mem

previously-allocated memory, or NULL.

[allow-none]

n_bytes

number of bytes to allocate.

 

Returns

the allocated memory, or NULL.


g_malloc_n ()

gpointer
g_malloc_n (gsize n_blocks,
            gsize n_block_bytes);

This function is similar to g_malloc(), allocating (n_blocks * n_block_bytes ) bytes, but care is taken to detect possible overflow during multiplication.

Parameters

n_blocks

the number of blocks to allocate

 

n_block_bytes

the size of each block in bytes

 

Returns

a pointer to the allocated memory

Since 2.24


g_malloc0_n ()

gpointer
g_malloc0_n (gsize n_blocks,
             gsize n_block_bytes);

This function is similar to g_malloc0(), allocating (n_blocks * n_block_bytes ) bytes, but care is taken to detect possible overflow during multiplication.

Parameters

n_blocks

the number of blocks to allocate

 

n_block_bytes

the size of each block in bytes

 

Returns

a pointer to the allocated memory

Since 2.24


g_realloc_n ()

gpointer
g_realloc_n (gpointer mem,
             gsize n_blocks,
             gsize n_block_bytes);

This function is similar to g_realloc(), allocating (n_blocks * n_block_bytes ) bytes, but care is taken to detect possible overflow during multiplication.

Parameters

mem

the memory to reallocate.

[allow-none]

n_blocks

the number of blocks to allocate

 

n_block_bytes

the size of each block in bytes

 

Returns

the new address of the allocated memory

Since 2.24


g_try_malloc_n ()

gpointer
g_try_malloc_n (gsize n_blocks,
                gsize n_block_bytes);

This function is similar to g_try_malloc(), allocating (n_blocks * n_block_bytes ) bytes, but care is taken to detect possible overflow during multiplication.

Parameters

n_blocks

the number of blocks to allocate

 

n_block_bytes

the size of each block in bytes

 

Returns

the allocated memory, or NULL.

Since 2.24


g_try_malloc0_n ()

gpointer
g_try_malloc0_n (gsize n_blocks,
                 gsize n_block_bytes);

This function is similar to g_try_malloc0(), allocating (n_blocks * n_block_bytes ) bytes, but care is taken to detect possible overflow during multiplication.

Parameters

n_blocks

the number of blocks to allocate

 

n_block_bytes

the size of each block in bytes

 

Returns

the allocated memory, or NULL

Since 2.24


g_try_realloc_n ()

gpointer
g_try_realloc_n (gpointer mem,
                 gsize n_blocks,
                 gsize n_block_bytes);

This function is similar to g_try_realloc(), allocating (n_blocks * n_block_bytes ) bytes, but care is taken to detect possible overflow during multiplication.

Parameters

mem

previously-allocated memory, or NULL.

[allow-none]

n_blocks

the number of blocks to allocate

 

n_block_bytes

the size of each block in bytes

 

Returns

the allocated memory, or NULL.

Since 2.24


g_free ()

void
g_free (gpointer mem);

Frees the memory pointed to by mem . If mem is NULL it simply returns.

Parameters

mem

the memory to free.

[allow-none]

g_clear_pointer ()

void
g_clear_pointer (gpointer *pp,
                 GDestroyNotify destroy);

Clears a reference to a variable.

pp must not be NULL.

If the reference is NULL then this function does nothing. Otherwise, the variable is destroyed using destroy and the pointer is set to NULL.

This function is threadsafe and modifies the pointer atomically, using memory barriers where needed.

A macro is also included that allows this function to be used without pointer casts.

Parameters

pp

a pointer to a variable, struct member etc. holding a pointer

 

destroy

a function to which a gpointer can be passed, to destroy *pp

 

Since 2.34


g_alloca()

#define             g_alloca(size)

Allocates size bytes on the stack; these bytes will be freed when the current stack frame is cleaned up. This macro essentially just wraps the alloca() function present on most UNIX variants. Thus it provides the same advantages and pitfalls as alloca(): <variablelist> <varlistentry><term></term><listitem><para>

  • alloca() is very fast, as on most systems it's implemented by just adjusting the stack pointer register. </para></listitem></varlistentry> <varlistentry><term></term><listitem><para>

    • It doesn't cause any memory fragmentation, within its scope, separate alloca() blocks just build up and are released together at function end. </para></listitem></varlistentry> <varlistentry><term></term><listitem><para>

    • Allocation sizes have to fit into the current stack frame. For instance in a threaded environment on Linux, the per-thread stack size is limited to 2 Megabytes, so be sparse with alloca() uses. </para></listitem></varlistentry> <varlistentry><term></term><listitem><para>

    • Allocation failure due to insufficient stack space is not indicated with a NULL return like e.g. with malloc(). Instead, most systems probably handle it the same way as out of stack space situations from infinite function recursion, i.e. with a segmentation fault. </para></listitem></varlistentry> <varlistentry><term></term><listitem><para>

    • Special care has to be taken when mixing alloca() with GNU C variable sized arrays. Stack space allocated with alloca() in the same scope as a variable sized array will be freed together with the variable sized array upon exit of that scope, and not upon exit of the enclosing function scope. </para></listitem></varlistentry> </variablelist>

Parameters

size

number of bytes to allocate.

 

Returns

space for size bytes, allocated on the stack


g_newa()

#define             g_newa(struct_type, n_structs)

Wraps g_alloca() in a more typesafe manner.

Parameters

struct_type

Type of memory chunks to be allocated

 

n_structs

Number of chunks to be allocated

 

Returns

Pointer to stack space for n_structs chunks of type struct_type


g_memmove()

#define             g_memmove(dest,src,len)

g_memmove has been deprecated since version 2.40 and should not be used in newly-written code.

Just use memmove().

Copies a block of memory len bytes long, from src to dest . The source and destination areas may overlap.

Parameters

dest

the destination address to copy the bytes to.

 

src

the source address to copy the bytes from.

 

len

the number of bytes to copy.

 

g_memdup ()

gpointer
g_memdup (gconstpointer mem,
          guint byte_size);

Allocates byte_size bytes of memory, and copies byte_size bytes into it from mem . If mem is NULL it returns NULL.

Parameters

mem

the memory to copy.

 

byte_size

the number of bytes to copy.

 

Returns

a pointer to the newly-allocated copy of the memory, or NULL if mem is NULL.


g_mem_set_vtable ()

void
g_mem_set_vtable (GMemVTable *vtable);

Sets the GMemVTable to use for memory allocation. You can use this to provide custom memory allocation routines.

The vtable only needs to provide malloc(), realloc(), and free() functions; GLib can provide default implementations of the others. The malloc() and realloc() implementations should return NULL on failure, GLib will handle error-checking for you. vtable is copied, so need not persist after this function has been called.

Note that this function must be called before using any other GLib functions.

Parameters

vtable

table of memory allocation routines.

 

g_mem_is_system_malloc ()

gboolean
g_mem_is_system_malloc (void);

Checks whether the allocator used by g_malloc() is the system's malloc implementation. If it returns TRUE memory allocated with malloc() can be used interchangeable with memory allocated using g_malloc(). This function is useful for avoiding an extra copy of allocated memory returned by a non-GLib-based API.

A different allocator can be set using g_mem_set_vtable().

Returns

if TRUE, malloc() and g_malloc() can be mixed.


g_mem_profile ()

void
g_mem_profile (void);

Outputs a summary of memory usage.

It outputs the frequency of allocations of different sizes, the total number of bytes which have been allocated, the total number of bytes which have been freed, and the difference between the previous two values, i.e. the number of bytes still in use.

Note that this function will not output anything unless you have previously installed the glib_mem_profiler_table with g_mem_set_vtable().

Types and Values

g_mem_gc_friendly

extern gboolean g_mem_gc_friendly;

This variable is TRUE if the G_DEBUG environment variable includes the key gc-friendly.


struct GMemVTable

struct GMemVTable {
  gpointer (*malloc)      (gsize    n_bytes);
  gpointer (*realloc)     (gpointer mem,
			   gsize    n_bytes);
  void     (*free)        (gpointer mem);
  /* optional; set to NULL if not used ! */
  gpointer (*calloc)      (gsize    n_blocks,
			   gsize    n_block_bytes);
  gpointer (*try_malloc)  (gsize    n_bytes);
  gpointer (*try_realloc) (gpointer mem,
			   gsize    n_bytes);
};

A set of functions used to perform memory allocation. The same GMemVTable must be used for all allocations in the same program; a call to g_mem_set_vtable(), if it exists, should be prior to any use of GLib.

Members

malloc ()

function to use for allocating memory.

 

realloc ()

function to use for reallocating memory.

 

free ()

function to use to free memory.

 

calloc ()

function to use for allocating zero-filled memory.

 

try_malloc ()

function to use for allocating memory without a default error handler.

 

try_realloc ()

function to use for reallocating memory without a default error handler.

 

glib_mem_profiler_table

extern GMemVTable *glib_mem_profiler_table;

A GMemVTable containing profiling variants of the memory allocation functions. Use them together with g_mem_profile() in order to get information about the memory allocation pattern of your program.

© manpagez.com 2000-2024
Individual documents may contain additional copyright information.